-
中国是抗生素生产和使用大国[1]。作为中国最常用的5类抗生素之一,β-内酰胺类抗生素生产量和销售份额在众多抗生素中名列前茅[2],在全球制药行业也具有举足轻重的地位[3-4]。青霉素和头孢菌素是使用最广泛的抗生素。2010年,青霉素和头孢菌素2种抗生素使用量占所有抗生素使用总量的近60%,与2000年相比增长了41%[5]。环境中β-内酰胺类抗生素的残留主要来自制药工业[6-9]、临床[10-12]和畜禽养殖[13-14]。抗生素生产过程产生的制药废水[8-9]及菌渣[15-16]中含有高浓度的抗生素残留[17]。LI等[18]对青霉素G生产废水(废母液)的研究表明,由于溶剂萃取过程的高温酸性环境使大部分青霉素G母体降解(残留浓度为153.0 μg·L−1),降解产物脱羧青霉噻唑酸和青霉醛的浓度可分别达到389.0 mg·L−1和75.3 mg·L−1。与青霉素G生产废水相比,青霉素生产排放菌渣中的青霉素G残留更高,可达5 000 mg·L−1[19],是β-内酰胺类抗生素排放强度最高的排放源。
尽管β-内酰胺类抗生素是生产和应用最广泛的抗生素,但由于其结构中的β-内酰胺环具有易水解和生物降解的特性,通常环境中检出浓度较低,甚至一些类型低于检测限。青霉素生产废水处理后,出水和受纳河流下游青霉素G浓度仅为1.68 μg·L−1和0.35 μg·L−1,但却发现大量对β-内酰胺类和其他各类抗生素具有多抗性的抗药细菌,这表明即使废水中抗生素母体浓度很低,其排放仍然可能导致环境细菌抗药性潜在风险[18]。头孢菌素生产废水中也出现了类似的现象[7]。制药菌渣中的青霉素G[20]、头孢菌素C[16]残留及转化产物导致在好氧堆肥过程中[17, 21]或土壤施用菌渣肥[20]后亦出现抗性基因和抗药菌升高的现象[20-22]。因此,深入认识环境中β-内酰胺类抗生素的环境行为、抗性的产生和传播、高浓度污染源的抗生素去除等,对于该类物质的环境管理和污染控制至关重要。
本文在对β-内酰胺类抗生素污染特征、环境行为和控制技术的研究进展进行梳理的基础上,重点关注了β-内酰胺类抗生素中最重要的“母体”抗生素原料药——青霉素G和头孢菌素C的环境行为和控制,并在构筑抗生素和抗性基因控制多级屏障技术体系和危险废弃物制药菌渣无害化处理及资源化利用等方面提出展望,以期为β-内酰胺类抗生素残留效价的削减和抗性的控制提供参考。
β-内酰胺类抗生素的环境行为与制药行业源头控制技术研究进展
Research progress of environmental behavior and source control technology in the pharmaceutical industry of β-lactam antibiotics
-
摘要: β-内酰胺类抗生素是目前生产量和使用量最大的抗生素类型之一,在不同的环境基质中都能检出其残留、相关抗药菌和抗性基因,具有潜在的环境风险。中国是世界上最大的β-内酰胺类抗生素原料药生产国,每年产生大量的制药废水和菌渣。如何有效去除制药废水中残留抗生素及效价,并实现制药菌渣资源化利用是行业发展的技术瓶颈。在查阅文献的基础上,梳理了β-内酰胺类抗生素的环境污染来源和污染特征方面的研究进展,阐述了抗生素在环境中的迁移、吸附、水解等环境行为,并从环境抗性的产生和传播角度分析了β-内酰胺类抗生素的环境影响;重点梳理了废水和菌渣中β-内酰胺类抗生素的控制技术方面的研究进展,在此基础上,从降解产物与抗性关系、抗生素和效价的控制目标、废水抗生素和抗性基因控制多级屏障技术体系和制药菌渣无害化及资源化等方面提出展望,以期为环境中β-内酰胺类抗生素的环境管理和风险控制提供参考。Abstract: β-lactam antibiotics are currently the largest production of fermentable antibiotics, with wide applications in clinical medicine, livestock, and poultry breeding, among many others. The antibiotic residues, antibiotic resistance bacteria, and antibiotic resistance genes can be detected in different environmental matrices, which has potential of causing environmental risks. As the world's largest producer of β-lactam antibiotic raw materials, China produces a large amount of pharmaceutical wastewater and relevant antibiotic fermentation residue annually. It remains challenging in the industry to remove residual antibiotics and potency in pharmaceutical wastewater, as well as to realize the utilization of antibiotic fermentation residue. On the basis of consulting the literature, this review article summarizes the most recent research progress on the sources and characteristics of environmental pollutions resulted from β-lactam antibiotics, accompanied by their behaviors such as migration, adsorption, and hydrolysis in the environments. Moreover, the environmental effects arose from β-lactam antibiotics are discussed from the resistance-generation and-transmission perspective. Building upon the aforementioned, this paper focused on the technology advance in controlling β-lactam antibiotics derived from pharmaceutical wastewater and antibiotic fermentation residue. Moreover, prospects are put forward in terms of the relationships among degradation products and resistance, control targets of antibiotics and potency, as well as multi-level barrier technological system for antibiotics and resistance gene control, and harmlessness and recycling of antibiotic fermentation residue. Overall, this article will provide scientific basis for environmental management and risk control of β-lactam antibiotics in the environments.
-
表 1 主要的β-内酰胺类抗生素
Table 1. Major β-lactam antibiotics
分类 亚类 化合物名称 青霉素类 天然青霉素 青霉素G 耐酸青霉素 青霉素V、苯氧乙基青霉素 耐酶青霉素 苯唑西林、氯唑西林、双氯西林、氟氯西林 广谱青霉素 氨苄西林、阿莫西林、匹氨西林 抗绿脓杆菌青霉素 羧苄西林、磺苄西林、替卡西林等 头孢菌素类 第1代 头孢噻吩、头孢噻啶、头孢唑啉等 第2代 头孢呋辛、头孢孟多、头孢替安等 第3代 头孢哌酮、头孢噻肟、头孢克肟等 第4代 头孢吡肟、头孢匹罗等 第5代 头孢洛林、头孢托罗、头孢吡普等 非典型类 头霉素类 头孢西丁、头孢美唑、头孢替坦等 拉氧头孢类 拉氧头孢 β-内酰胺酶抑制剂 克拉维酸、舒巴坦等 单环β-内酰胺类 氨曲南、卡芦莫南 碳青霉烯类 亚胺培南,美罗培南,帕尼培南等 表 2 β-内酰胺类抗生素在不同环境介质中的分布浓度
Table 2. Distribution concentration of β-lactam antibiotics in different environmental media
环境基质 检测方法 抗生素及其转化产物名称 浓度 来源 医院废水 HPLC-MS/MS 阿莫西林、青霉素G、青霉素V、头孢克洛、氯唑西林、头孢氨苄 0~4 100 ng·L−1 [11] 制药废水 HPLC-MS/MS 青霉素G、青霉噻唑酸、脱羧青霉噻唑酸、青霉二酸、青霉异二酸、青霉醛、头孢呋辛、头孢唑啉、头孢噻肟、头孢曲松、阿莫西林、头孢菌素 0.13~703.84 mg·L−1 [7-8, 18, 59] 地表水 HPLC-MS/MS 氨苄西林、哌拉西林、阿莫西林、头孢克洛、氯唑西林、青霉素G、青霉素V 0~250 ng·L−1 [11, 56] 表层海水 HPLC-MS/MS 头孢氨苄 10~180 ng·L−1 [60] 城市污水 HPLC-MS/MS 青霉素G、头孢氨苄、头孢噻肟、阿莫西林、青霉素V、头孢克洛、氨苄西林、氯唑西林、头孢菌素、苯唑西林 0~1 400 ng·L−1 [11, 54, 57, 61-63] 河流底泥 HPLC-MS/MS 青霉素G、青霉噻唑酸、脱羧青霉噻唑酸、青霉二酸、青霉异二酸、青霉醛 0~6.56 mg·kg−1 [18, 53] 活性污泥 HPLC-MS/MS 青霉素G、青霉噻唑酸、脱羧青霉噻唑酸、青霉二酸、青霉异二酸、青霉醛 0.034~470 mg·kg−1 [18, 41] 制药菌渣 HPLC-UV
HPLC-MS/MS青霉素G、头孢菌素C 2 000~5 000 mg·L−1
(鲜菌渣)
70~420 mg·kg−1(干菌渣)[15-17, 19, 64] 表 3 常见的物理化学处理工艺及处理效果
Table 3. Common physical and chemical treatment process and treatment effect
处理工艺 基质 处理条件 抗生素名称 浓度 去除效果 来源 吸附 制药废水 pH 为2~7,温度 30 ℃,吸附剂量0.1~3.5 g 阿莫西林 317 mg·L−1 膨润土为吸附剂,去除率88.01%;活性炭为吸附剂,去除率94.67% [59] 膜处理 城市污水 MF微滤2 min,平衡罐
5 min,RO反渗透
0.5 min,加氯反冲洗阿莫西林 90 ng·L−1 头孢氨苄去除率87%~100%,其余抗生素去除率100% [57] 氯化 模拟配水 阿莫西林和头孢拉啶:ClO2和抗生素摩尔比为 0.25~2.0,pH=8.0,反应时间1 min
青霉素:ClO2和抗生素摩尔比为 0.25~1.5,pH=3.5,反应时间2 h阿莫西林
头孢拉啶
青霉素G1.6 mg·L−1
1.8 mg·L−1
25.0 mg·L−1阿莫西林和头孢拉啶在1 min内全部降解,青霉素可以在2 h内全部降解 [110] 芬顿 模拟配水 pH为3,H2O2浓度
25 mmol·L−1,
Fe3+浓度1.5 mmol·L−1青霉素G 400 mg·L−1 配水中COD的去除率达56%,TOC的去除率达46% [111] 模拟配水 m(COD): m(H2O2): m(Fe2+)=1:3:0.3,
pH=3阿莫西林
氨苄青霉素
氯唑西林104 mg·L−1
105 mg·L−1
103 mg·L−12 min抗生素完全降解,10 min生物降解性提高到0.37,60 min COD和DOC降解率为81.4%和54.3% [112] 光催化 模拟配水 pH 为3.0~9.0,太阳光源,催化剂TiO2 0.1~0.7 g·L−1或不同比例铁碳混合物 阿莫西林 100 mg·L−1 最优条件下去除率可以达到85% [113] 模拟配水 pH为 3.0~11.0,紫外光源
365 nm,功率6 W,催化剂TiO2浓度 0.5~2.0 g·L−1,H2O2 50~300 mg·L−1阿莫西林
氨苄青霉素
氯唑西林104 mg·L−1
105 mg·L−1
103 mg·L−1pH=5,TiO2 1.0 g·L−1,抗生素去除率均达50%,DOC去除率81%;pH=5,TiO2为
1.0 g·L−1,H2O2为100 mg·L−1,抗生素
30 min内完全降解,24 h矿化率达40%[114] 臭氧 模拟配水 pH为2.5~7.2,O3浓度为1.6×10−4 mol·L−1 阿莫西林 210 mg·L−1 4 min阿莫西林去除率90%,20 min阿莫西林矿化率可以达到18.2%,延长时间后,矿化率保持较低水平 [115] 模拟配水 pH为3.0~11.0,O3量为
3 g·(h·L)−1,H2O2浓度0~200 mmol·L−1头孢曲松
青霉素G— 60 min抗生素去除率95%,TOC去除率45%,提高废水可生化性 [110] 模拟配水 预臭氧pH 为7.0~12.0,O3量
1 800 mg·(h·L)−1,H2O2 100 mmol·L−1青霉素G 600 mg·L−1 pH=7,预臭氧工艺提高废水可生化性,但并不能完全去除生态毒性,还存在严重生物抑制作用;1 h内臭氧COD去除率为37%,而经预臭氧COD去除率达76% [116] 水热 制药菌渣 高压釜内部容积1.0 L,内径70 mm,温度100~220 ℃ 头孢菌素C — 在100~220 ℃和0~60 min内,头孢菌素C的去除率为99.0%~99.9% [66] 热水解 制药菌渣 盐酸2 mol·L−1,投加量10~60 mL,温度50~100 ℃ 青霉素G 9 g·mL−1(效价) 最优条件盐酸投加40 mL浸泡1 h,90 ℃水浴中加热机械搅拌3 h,过滤,效价去除率80.93% [64] 制药菌渣 加水倍数为3,水解温度
60 ℃,水解时间30 min青霉素G 5 000 mg·kg−1 水解后菌渣青霉素残留小于0.5 mg·kg−1,凯式氮削减率大于45%,有效降低青霉素残留及凯氏氮对厌氧消化的影响,为厌氧消化高效、稳定进行创造有利条件 [19] 制药菌渣 温度60~100 ℃ 青霉素G 2 000 mg·L−1 60 ℃时,20 min去除率为20%;100 ℃时,20 min去除率为98% [15] 微波 制药菌渣 温度100 ℃,微波功率为300、500、700 W 头孢菌素C 420 mg·kg−1 前150 s降解效率较低,此后降解速率明显提升,不同功率条件微波辐射15 min,降解率均超过99.9% [16] -
[1] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China[J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271 [2] THYKAER J, NIELSEN J. Metabolic engineering of β-lactam production[J]. Metabolic Engineering, 2003, 5(1): 56-69. doi: 10.1016/S1096-7176(03)00003-X [3] HARRIS S J, CORMICAN M, CUMMINS E. Antimicrobial residues and antimicrobial-resistant bacteria: Impact on the microbial environment and risk to human health: A review[J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(4): 767-809. doi: 10.1080/10807039.2012.688702 [4] OZCENGIZ G, DEMAIN A L. Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation[J]. Biotechnology Advances, 2013, 31(2): 287-311. doi: 10.1016/j.biotechadv.2012.12.001 [5] PAN M, CHU L M. Fate of antibiotics in soil and their uptake by edible crops[J]. Science of the Total Environment, 2017, 599-600: 500-512. doi: 10.1016/j.scitotenv.2017.04.214 [6] MILAKOVIC M, VESTERGAARD G, GONZALEZ-PLAZA J J, et al. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments[J]. Science of the Total Environment, 2020, 706: 136001. doi: 10.1016/j.scitotenv.2019.136001 [7] YU X, ZHANG M Y, ZUO J E, et al. Evaluation of antibiotic resistant lactose fermentative opportunistic pathogenic enterobacteriaceae bacteria and blatem-2 gene in cephalosporin wastewater and its discharge receiving river[J]. Journal of Environmental Management, 2018, 228: 458-465. [8] WANG J L, MAO D Q, MU Q H, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2015, 526: 366-373. doi: 10.1016/j.scitotenv.2015.05.046 [9] LARSSON D G J, DE PEDRO C, PAXEUS N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals[J]. Journal of Hazardous Materials, 2007, 148(3): 751-755. doi: 10.1016/j.jhazmat.2007.07.008 [10] KOVALOVA L, SIEGRIST H, SINGER H, et al. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination[J]. Environmental Science & Technology, 2012, 46(3): 1536-1545. [11] WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8): 2711-2723. doi: 10.1016/j.scitotenv.2008.11.059 [12] KUMMERER K. Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: A review[J]. Chemosphere, 2001, 45(6/7): 957-969. [13] SLANAA M, DOLENC M S. Environmental risk assessment of antimicrobials applied in veterinary medicine: A field study and laboratory approach[J]. Environmental Toxicology and Pharmacology, 2013, 35(1): 131-141. doi: 10.1016/j.etap.2012.11.017 [14] PARK H, CHOUNG Y K. Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion s-transferase[J]. Human and Ecological Risk Assessment: An International Journal, 2007, 13(5): 1147-1155. doi: 10.1080/10807030701506223 [15] WANG B, LI G M, CAI C, et al. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: Organic matter’s maturation and antibiotic resistance genes[J]. Science of the Total Environment, 2018, 636: 1463-1469. doi: 10.1016/j.scitotenv.2018.04.288 [16] CAI C, LIU H L, WANG B. Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics[J]. Journal of Hazardous Materials, 2017, 331: 265-272. doi: 10.1016/j.jhazmat.2017.02.034 [17] ZHANG Z H, ZHAO J, YU C G, et al. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity[J]. Bioresource Technology, 2015, 198: 403-409. doi: 10.1016/j.biortech.2015.09.005 [18] LI D, YANG M, HU J Y, et al. Determination of penicillin g and its degradation products in a penicillin production wastewater treatment plant and the receiving river[J]. Water Research, 2008, 42(1/2): 307-317. [19] 王勇军, 陈平, 韦惠民, 等. 青霉素菌渣厌氧消化技术研究[J]. 中国沼气, 2015, 33(5): 28-31. doi: 10.3969/j.issn.1000-1166.2015.05.005 [20] WANG B, LIU H L, CAI C, et al. Effect of dry mycelium of penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth[J]. Environmental Science and Pollution Research, 2016, 23: 20728-20738. [21] ZHANG Z H, ZHAO J, YU C G, et al. Chelatococcus composti sp. nov., isolated from penicillin fermentation fungi residue with pig manure co-compost[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(3): 565-569. doi: 10.1099/ijsem.0.001651 [22] CAI C, LIU H L. Application of microwave-pretreated cephalosporin mycelial dreg (CMD) as soil amendment: Temporal changes in chemical and fluorescent parameters of soil organic matter[J]. Science of the Total Environment, 2018, 621: 417-424. doi: 10.1016/j.scitotenv.2017.11.261 [23] DESHPANDE A D, BAHETI K G, CHATTERJEE N R. Degradation of β-lactam antibiotics[J]. Current Science, 2004, 87(12): 1684-1695. [24] GUAN Y D, WANG B, GAO Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: A review[J]. Pedosphere, 2017, 27(1): 42-51. doi: 10.1016/S1002-0160(17)60295-9 [25] JAFARI OZUMCHELOUEI E, HAMIDIAN A H, ZHANG Y, et al. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment[J]. Water Environment Research, 2020, 92(2): 177-188. doi: 10.1002/wer.1237 [26] SHEEHAN J C, HENERYLOGAN K R. The total synthesis of penicillin-V[J]. Journal of the American Chemical Society, 1959, 81(12): 1262-1263. [27] DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3): 417-433. doi: 10.1128/MMBR.00016-10 [28] NEWTON G G F, ABRAHAM E P. Cephalosporin-C, a new antibiotic containing sulphur and d-α-aminoadipic acid[J]. Nature, 1955, 175: 548-550. doi: 10.1038/175548a0 [29] ABRAHAM E P, NEWTON G G F. The structure of cephalosporin C[J]. Biochemical Journal, 1961, 79: 377-391. doi: 10.1042/bj0790377 [30] SONAWANE C V. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes[J]. Critical Reviews in Biotechnology, 2006, 26(2): 95-120. doi: 10.1080/07388550600718630 [31] RIBEIRO A R, SURES B, SCHMIDT T C. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies[J]. Environmental Pollution, 2018, 241: 1153-1166. doi: 10.1016/j.envpol.2018.06.040 [32] ALDEEK F, ROSANA M R, HAMILTON Z K, et al. LC-MS/MS method for the determination and quantitation of penicillin g and its metabolites in citrus fruits affected by huanglongbing[J]. Journal of Agricultural and Food Chemistry, 2015, 63(26): 5993-6000. doi: 10.1021/acs.jafc.5b02030 [33] WANG X H, LIN A Y. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity[J]. Environmental Science & Technology, 2012, 46(22): 12417-12426. [34] EVAGGELOPOULOU E N, SAMANIDOU V F. Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus aurata) tissue according to the European Union Decision 2002/657/EC[J]. Food Chemistry, 2013, 136(3/4): 1322-1329. [35] LIN J, NISHINO K, ROBERTS M C, et al. Mechanisms of antibiotic resistance[J]. Frontiers in Microbiology, 2015, 6: 34. [36] REN Z, ZHANG W, LI J, et al. Effect of organic solutions on the stability and extraction equilibrium of penicillin G[J]. Journal of Chemical & Engineering Data, 2010, 55(8): 2687-2694. [37] ZENG X M, LIN J. Beta-lactamase induction and cell wall metabolism in gram-negative bacteria[J]. Frontiers in Microbiology, 2013, 4: 128. [38] PAZDA M, KUMIRSKA J, STEPNOWSKI P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems: A review[J]. Science of the Total Environment, 2019, 697: 134023. doi: 10.1016/j.scitotenv.2019.134023 [39] LI D, YANG M, HU J Y, et al. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river[J]. Environmental Toxicology and Chemistry, 2008, 27(1): 80-86. doi: 10.1897/07-080.1 [40] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review[J]. Water Research, 2013, 47(3): 957-995. doi: 10.1016/j.watres.2012.11.027 [41] MATSUO H, SAKAMOTO H, ARIZONO K, et al. Behavior of pharmaceuticals in waste water treatment plant in Japan[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(1): 31-35. doi: 10.1007/s00128-011-0299-7 [42] LARSSON D G J. Pollution from drug manufacturing: Review and perspectives[J]. Philosophical Transactions of the Royal Society B, 2014, 369: 20130571. doi: 10.1098/rstb.2013.0571 [43] KALTENBOECK B, RAY P, KNOWLTON K F, et al. Development and validation of a UPLC-MS/MS method to monitor cephapirin excretion in dairy cows following intramammary infusion[J]. Plos One, 2014, 9(11): e112343. doi: 10.1371/journal.pone.0112343 [44] MANZETTI S, GHISI R. The environmental release and fate of antibiotics[J]. Marine Pollution Bulletin, 2014, 79(1/2): 7-15. [45] KUMMERER K, HENNINGER A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent[J]. Clinical Microbiology and Infection, 2003, 9(12): 1203-1214. doi: 10.1111/j.1469-0691.2003.00739.x [46] KUMMERER K. Resistance in the environment[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(2): 311-320. doi: 10.1093/jac/dkh325 [47] CROMWELL G L. Why and how antibiotics are used in swine production[J]. Animal Biotechnology, 2002, 13(1): 7-27. doi: 10.1081/ABIO-120005767 [48] KUMMERER K. Antibiotics in the aquatic environment: A review-Part I[J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086 [49] JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology, 2014, 22(9): 536-545. doi: 10.1016/j.tim.2014.05.005 [50] PAN M, CHU L M. Leaching behavior of veterinary antibiotics in animal manure-applied soils[J]. Science of the Total Environment, 2016, 579: 446-473. [51] LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of antibiotics in china's major rivers and seas (2005-2016)[J]. Science of the Total Environment, 2018, 615: 906-917. doi: 10.1016/j.scitotenv.2017.09.328 [52] JIANG M X, WANG L H, JI R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[J]. Chemosphere, 2010, 80(11): 1399-1405. doi: 10.1016/j.chemosphere.2010.05.048 [53] ZHANG Q, YING G, PAN C, et al. A comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modelling, and linkage to bacterial resistance[J]. Environmental Science Technology, 2015, 49(11): 6772-6782. doi: 10.1021/acs.est.5b00729 [54] LI B, ZHANG T. Mass flows and removal of antibiotics in two municipal wastewater treatment plants[J]. Chemosphere, 2011, 83(9): 1284-1289. doi: 10.1016/j.chemosphere.2011.03.002 [55] HIRTE K, SEIWERT B, SCHUURMANN G, et al. New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater[J]. Water Research, 2016, 88: 880-888. doi: 10.1016/j.watres.2015.11.028 [56] CHRISTIANA T, SCHNEIDER R J, FÄRBERB H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31: 36-44. doi: 10.1002/aheh.200390014 [57] WATKINSON A J, MURBY E J, COSTANZO S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling[J]. Water Research, 2007, 41(18): 4164-4176. doi: 10.1016/j.watres.2007.04.005 [58] TRAN N H, REINHARD M, GIN K Y H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: A review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029 [59] PUTRA E K, PRANOWO R, SUNARSO J, et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics[J]. Water Research, 2009, 43(9): 2419-2430. doi: 10.1016/j.watres.2009.02.039 [60] GULKOWSKA A, HE Y H, SO M K, et al. The occurrence of selected antibiotics in Hong Kong coastal waters[J]. Marine Pollution Bulltin, 2007, 54(8): 1287-1293. doi: 10.1016/j.marpolbul.2007.04.008 [61] GULKOWSKA A, LEUNG HW, SO M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1/2): 395-403. [62] CHA J M, YANG S, CARLSON K H. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2006, 1115(1/2): 46-57. [63] LI B, ZHANG T, XU Z Y, et al. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2009, 645(1/2): 64-72. [64] 周波, 项铁男. 青霉素菌渣灭活技术研究[J]. 中国抗生素, 2014, 39(6): 418-421. [65] PAN M, CHU L M. Adsorption and degradation of five selected antibiotics in agricultural soil[J]. Science of the Total Environment, 2016, 545/546: 48-56. doi: 10.1016/j.scitotenv.2015.12.040 [66] ZHANG G, MA D, PENG C, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical Engineering Journal, 2014, 252: 230-238. doi: 10.1016/j.cej.2014.04.092 [67] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270. doi: 10.3321/j.issn:1000-0933.2006.01.032 [68] 贾励瑛. β-内酰胺类抗生素在污水处理厂的分布与迁移转化[D]. 邯郸: 河北工程大学, 2012. [69] 安博宇, 袁园园, 黄玲利, 等. 头孢菌素类药物在环境中的行为及残留研究进展[J/OL]. [2020-06-03]. 中国抗生素杂志: 1-9.https://doi.org/10.13461/j.cnki.cja.006785. [70] 王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3): 108-112. doi: 10.3969/j.issn.1003-6504.2007.03.040 [71] MITCHELL S M, ULLMAN J L, TEEL A L, et al. pH and temperature effects on the hydrolysis of three beta-lactam antibiotics: Ampicillin, cefalotin and cefoxitin[J]. Science of the Total Environment, 2014: 466 547-555. [72] LANGIN A, ALEXY R, KONIG A, et al. Deactivation and transformation products in biodegradability testing of beta-lactams amoxicillin and piperacillin[J]. Chemosphere, 2009, 75(3): 347-354. doi: 10.1016/j.chemosphere.2008.12.032 [73] KESSLER D P, GHEBRE-SELLASSIE I, M. KNEVEL A, et al A kinetic analysis of the acidic degradation of penicillin g and confirmation of penicillamine as a degradation product[J]. Journal of the Chemical Society, Perkin Transactions 2, 1981, 12(9): 1247-1251. [74] ALDEEK F, CANZANI D, STANDLAND M, et al. Identification of penicillin g metabolites under various environmental conditions using UHPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2016, 64(31): 6100-6107. doi: 10.1021/acs.jafc.5b06150 [75] 陈兆坤, 胡昌勤. 头孢菌素类抗生素的降解机制[J]. 国外医药(抗生素分册), 2004, 25(6): 249-252. [76] 温玉麟. 头孢菌素类抗生素的稳定性(上)[J]. 国外医药(抗生素分册), 1990, 11(4): 278-284. [77] WATKINS R R, PAPP-WALLACE K M, DRAWZ S M, et al. Novel beta-lactamase inhibitors: A therapeutic hope against the scourge of multidrug resistance[J]. Frontiers in Microbiology, 2013, 4: 392. [78] KÜMMERER K. Antibiotics in the aquatic environment: A review-Part II[J]. Chemosphere, 2009, 75(4): 435-441. doi: 10.1016/j.chemosphere.2008.12.006 [79] THOMSON K S, MOLAND E S. Version 2000: The new β-lactamases of gram-negative bacteria at the dawn of the new millennium[J]. Microbes and Infection, 2000, 2(10): 1225-1235. doi: 10.1016/S1286-4579(00)01276-4 [80] CHEN J, LI H, YANG J S, et al. Prevalence and characterization of integrons in multidrug resistant acinetobacter baumannii in eastern China: A multiple-hospital study[J]. International Journal of Environmental Research and Public Health, 2015, 12(8): 10093-10105. doi: 10.3390/ijerph120810093 [81] YIGIT H, QUEENAN A M, ANDERSON G J, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of klebsiella pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(4): 1151-1161. doi: 10.1128/AAC.45.4.1151-1161.2001 [82] ADLER M. Mechanisms and dynamics of carbapenem resistance in Escherichia coli[D]. Sweden: Uppsala University, 2014. [83] Centers for Disease Control and Prevention (U S), National Center for Emerging Zoonotic and Infectious Diseases(U S), National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention(U S), National Center for Immunization and Respiratory Diseases (U S). Antibiotic resistance threats in the United States, 2013[M/OL]. [2020-06-03]. 2013. https://stacks.cdc.gov/view/cdc/20705. [84] HENRIQUES I S, FONSECA F, ALVES A, et al. Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters[J]. Research in Microbiology, 2006, 157(10): 938-947. doi: 10.1016/j.resmic.2006.09.003 [85] BAQUERO F, MARTINEZ J L, CANTON R. Antibiotics and antibiotic resistance in water environments[J]. Current Opinion in Biotechnology, 2008, 19(3): 260-265. doi: 10.1016/j.copbio.2008.05.006 [86] LI D, QI R, YANG M, et al. Bacterial community characteristics under long-term antibiotic selection pressures[J]. Water Research, 2011, 45(18): 6063-6073. doi: 10.1016/j.watres.2011.09.002 [87] CALL D R, MATTHEWS L, SUBBIAH M, et al. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?[J]. Frontiers in Microbiology, 2013, 4: 193. [88] PEI R, CHA J, CARLSON K H, et al. Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water[J]. Environmental Science & Technology, 2007, 41(14): 5108-5113. [89] 罗越. 青霉素生产废水深度处理[D]. 太原: 山西大学, 2015. [90] CHEN Z Q, WANG H C, CHEN Z B, et al. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin[J]. Journal of Hazardous Materials, 2011, 185(2/3): 905-913. [91] GUO R X, XIE X D, CHEN J Q. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system[J]. Environmental Technology, 2015, 36(5/6/7/8): 844-851. [92] ZHOU L J, YING G G, LIU S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in south China[J]. Science of the Total Environment, 2013, 452/453: 365-376. doi: 10.1016/j.scitotenv.2013.03.010 [93] BOUKI C, VENIERI D, DIAMADOPOULOS E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review[J]. Ecotoxicology and Environmental Safety, 2013, 91: 1-9. doi: 10.1016/j.ecoenv.2013.01.016 [94] CHOW L, WALDRON L, GILLINGS M R. Potential impacts of aquatic pollutants: Sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance[J]. Frontiers in Microbiology, 2015, 6: 803. [95] WANG J Y, AN X L, HUANG F Y, et al. Antibiotic resistome in a landfill leachate treatment plant and effluent-receiving river[J]. Chemosphere, 2020, 242: 125207. doi: 10.1016/j.chemosphere.2019.125207 [96] 张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. doi: 10.12030/j.cjee.201801010 [97] 成建华, 张文莉. 抗生素菌渣处理工艺设计[J]. 医药工程设计, 2003, 24(2): 31-34. [98] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2): 72-75. [99] LI C, ZHANG G, ZHANG Z, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 208: 49-57. doi: 10.1016/j.biortech.2016.02.064 [100] ZHANG S H, CHEN Z Q, WEN Q X, et al. Assessing the stability in composting of penicillin mycelial dreg via parallel factor (parafac) analysis of fluorescence excitation-emission matrix (EEM)[J]. Chemical Engineering Journal, 2016, 299: 167-176. doi: 10.1016/j.cej.2016.04.020 [101] ZHANG S H, CHEN Z Q, WEN Q X, et al. Effectiveness of bulking agents for co-composting penicillin mycelial dreg (PMD) and sewage sludge in pilot-scale system[J]. Environmental Science and Pollution Research, 2016, 23(2): 1362-1370. doi: 10.1007/s11356-015-5357-y [102] ZHANG S H, CHEN Z Q, WEN Q X, et al. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155: 358-366. doi: 10.1016/j.chemosphere.2016.04.051 [103] YANG L, ZHANG S H, CHEN Z Q, et al. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge[J]. Bioresource Technology, 2016, 204: 185-191. doi: 10.1016/j.biortech.2016.01.004 [104] AWAD M, TIAN Z, GAO Y X, et al. Pretreatment of spiramycin fermentation residue using hyperthermophilic digestion: Quick startup and performance[J]. Water Science and Technology, 2018, 78(9): 1823-1832. doi: 10.2166/wst.2018.256 [105] NAZARI G, ABOLGHASEMI H, ESMAIELI M, et al. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study[J]. Applied Surface Science, 2016, 375: 144-153. doi: 10.1016/j.apsusc.2016.03.096 [106] MITCHELL S M, SUBBIAH M, ULLMAN J L, et al. Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 162-169. doi: 10.1016/j.jece.2014.11.012 [107] HE X, MEZYK S P, MICHAEL I, et al. Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation[J]. Journal of Hazardous Materials, 2014, 279: 375-383. doi: 10.1016/j.jhazmat.2014.07.008 [108] SERNA-GALVIS E A, FERRARO F, SILVA-AGREDO J, et al. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes[J]. Water Research, 2017, 122: 128-138. doi: 10.1016/j.watres.2017.05.065 [109] 岳秀萍, 张涛. Fenton氧化与Fe/C微电解预处理头孢菌抗生素废水的实验研究[J]. 太原理工大学学报, 2012, 43(3): 325-328. doi: 10.3969/j.issn.1007-9432.2012.03.018 [110] NAVALON S, ALVARO M, GARCIA H. Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2[J]. Water Research, 2008, 42(8/9): 1935-1942. [111] ARSLAN-ALATON I, DOGRUEL S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes[J]. Journal of Hazardous Materials, 2004, 112(1/2): 105-113. [112] ELMOLLA E, CHAUDHURI M. Optimization of fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of Hazardous Materials, 2009, 170(2/3): 666-672. [113] KLAUSON D, BABKINA J, STEPANOVA K, et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1/2): 39-45. [114] ELMOLLA ES, CHAUDHURI M. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process[J]. Journal of Hazardous Materials, 2009, 172(2/3): 1476-1481. [115] ANDREOZZI R, CANTERINO M, MAROTTA R, et al. Antibiotic removal from wastewaters: The ozonation of amoxicillin[J]. Journal of Hazardous Materials, 2005, 122(3): 243-250. doi: 10.1016/j.jhazmat.2005.03.004 [116] ARSLAN-ALATON I, CAGLAYAN A E. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent[J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 131-140. doi: 10.1016/j.ecoenv.2005.02.014 [117] DODD M C, BUFFLE M O, GUNTEN U V. Oxidation of antibacterial molecules by aqueous ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment[J]. Environmental Science & Technology, 2006, 40(6): 1969-1977. [118] YI Q Z, GAO Y X, ZHANG H, et al. Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J]. Chemical Engineering Journal, 2016, 300: 139-145. doi: 10.1016/j.cej.2016.04.120 [119] YI Q Z, ZHANG Y, GAO Y X, et al. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs[J]. Water Research, 2017, 110: 211-217. doi: 10.1016/j.watres.2016.12.020