-
数个世纪以来,人类对自然资源进行了大规模的利用和改造,随之也带来了严峻的资源和生态环境问题[1]。我国环境容量有限,生态系统脆弱,人类生产生活产生的大量废水排放已成为水体污染和水生态退化的关键成因[2]。另一方面,在气候变化背景下,以污染物降解为单一目标的废水处理模式面临极大挑战,主要体现在废水过度处理产生的高能耗、大量外加药剂及温室气体排放与可持续发展之间的突出矛盾[3-4]。实际上,废水中蕴含了有机碳、氮和磷等宝贵资源,对其加以有效转化,可创造具有广泛市场用途和新价值的资源产品。因此,如何实现废水处理从高消耗、高成本转变为可再生资源的深度回收与增值利用,是水污染控制领域亟待解决的核心课题,也是联合国面向2030年可持续发展目标的重要内容[5]。近年来,生物电化学、新型膜材料及合成生物学等科学技术的快速进步,为实现废水资源增值产品化提供了新的思路[6]。
本文聚焦废弃资源回收利用的科技前沿,以废水中可利用物质的增值再生与产品转化为目标,以单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等在商业市场中具有广阔前景的高附加值产品作为切入点,分析和总结废水资源化技术的国际发展趋势,以及这些技术面临的瓶颈和挑战,从而为水污染控制领域重构能满足我国乃至全球经济社会发展新需要的下一代废水处理与资源循环技术体系指明方向。
基于高附加值产品的废水资源化技术发展趋势与应用展望
Trends, perspective and prospects on valorization of pollutants from wastewater into marketable products
-
摘要: 废水中含有机碳、氮和磷元素等宝贵资源。如何实现废水处理从高消耗、高成本转变为可再生资源的深度回收与增值利用,不仅是水污染控制领域亟待解决的关键核心问题,也是缓解人口快速增长及生活水平提高对传统自然资源带来巨大需求的主要思路。在文献调研和前期研究的基础上,以单细胞蛋白、聚羟基烷酸、细菌纤维素、鸟粪石和蓝铁矿等高附加值产品为例,分析总结既有与新兴废水资源化技术的国际发展趋势,探讨这些技术面临的瓶颈和挑战,以期为水污染控制领域重构经济社会发展新需要的下一代废水处理与资源产品技术体系提供参考。Abstract: Wastewater now has been recognized as a valuable resource from which organic matters, nitrogen, phosphorus, and other constituents can be harvested to produce valuable and marketable products. In this study, wastewater treatment in most world countries and regions is experiencing a paradigm shift from a resource-and capital-intensive pollutant removal scenario to a circular economy, and thereby reducing significant pressures on natural resources attributed from increasing populations and human activities. Based on literature review and preliminary explorations, this review article therefore aims to analyze and summarize the trends, perspectives and prospects on valorization of pollutants from wastewater into marketable products, primarily single cell protein, polyhydroxyalkanoate, bacterial cellulose, struvite and vivianite, with the goal of providing implications beneficial for future efforts on development and innovation of concepts, theories and approaches to enable resource recovery and valorization from wastewater and thereby mitigating ever-growing demands on traditional natural resources. The bottle necks and challenges faced by these technologies were discussed. This will provide reference for the next generation technology system of wastewater treatment and resource products which can meet the new requirements of the rebuilt social enconmy development in water pollution control field.
-
Key words:
- wastewater /
- valorization /
- single cell protein /
- polyhydroxyalkanoate /
- bacterial cellulose /
- struvite /
- vivianite
-
[1] LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science, 2015, 347(6225): 1258832. doi: 10.1126/science.1258832 [2] LIU J G, DIAMOND J. Science and government - Revolutionizing China's environmental protection[J]. Science, 2008, 319(5859): 37-38. doi: 10.1126/science.1150416 [3] WANG X, LIU J X, REN N Q, et al. Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study[J]. Environmental Science & Technology, 2012, 46(10): 5542-5549. [4] WANG X H, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China[J]. Journal of Cleaner Production, 2015, 94: 278-283. doi: 10.1016/j.jclepro.2015.02.007 [5] WANG X, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature[J]. Science Advances, 2018, 4(8): eaaq0210. doi: 10.1126/sciadv.aaq0210 [6] ZODROW K R, LI Q, BUONO R M, et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security[J]. Environmental Science & Technology, 2017, 51(18): 10274-10281. [7] ANUPAMA, RAVINDRA P. Value-added food: Single cell protein[J]. Biotechnology Advances, 2000, 18(6): 459-479. doi: 10.1016/S0734-9750(00)00045-8 [8] 王宇灵, 覃瑞, 刘虹, 等. 单细胞蛋白应用于食品工业的现状和展望[J]. 中国食物与营养, 2019, 25(10): 29-32. doi: 10.3969/j.issn.1006-9577.2019.10.006 [9] RITALA A, HAKKINEN S T, TOIVARI M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016[J]. Frontiers in Microbiology, 2017, 8: 2009. doi: 10.3389/fmicb.2017.02009 [10] MATASSA S, BOON N, PIKAAR I, et al. Microbial protein: future sustainable food supply route with low environmental footprint[J]. Microbial Biotechnology, 2016, 9(5): 568-575. doi: 10.1111/1751-7915.12369 [11] PIKAAR I, MATASSA S, RABAEY K, et al. Microbes and the next nitrogen revolution[J]. Environmental Science & Technology, 2017, 51(13): 7297-7303. [12] MATASSA S, VERSTRAETE W, PIKAAR I, et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria[J]. Water Research, 2016, 101: 137-146. doi: 10.1016/j.watres.2016.05.077 [13] VOLOVA T G, BARASHKOV V A. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms[J]. Applied Biochemistry and Microbiology, 2010, 46(6): 574-579. doi: 10.1134/S0003683810060037 [14] JIANG Y, MAY H D, LU L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation[J]. Water Research, 2019, 149: 42-55. doi: 10.1016/j.watres.2018.10.092 [15] REN Z J. Microbial fuel cells: Running on gas[J]. Nature Energy, 2017, 2(6): 17093. doi: 10.1038/nenergy.2017.93 [16] STRONG P J, XIE S, CLARKE W P. Methane as a Resource: Can the methanotrophs add Value?[J]. Environmental Science & Technology, 2015, 49(7): 4001-4018. [17] ALLOUL A, GANIGUÉ R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742. [18] WANG L, LIN S. Mechanism of selective ion removal in membrane capacitive deionization for water softening[J]. Environmental Science & Technology, 2019, 53(10): 5797-5804. [19] WANG L, DYKSTRA J E, LIN S. Energy efficiency of capacitive deionization[J]. Environmental Science & Technology, 2019, 53(7): 3366-3378. [20] WANG L, LIN S. Membrane capacitive deionization with constant current vs constant voltage charging: Which is better?[J]. Environmental Science & Technology, 2018, 52(7): 4051-4060. [21] SCHMIDT C, KRAUTH T, WAGNER S. Export of plastic debris by rivers into the sea[J]. Environmental Science & Technology, 2017, 51(21): 12246-12253. [22] ALBUQUERQUE M G E, TORRES C A V, REIS M A M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection[J]. Water Research, 2010, 44(11): 3419-3433. doi: 10.1016/j.watres.2010.03.021 [23] AMARO T, ROSA D, COM G, et al. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production[J]. Frontiers in Microbiology, 2019, 10: 992. doi: 10.3389/fmicb.2019.00992 [24] TARRAHI R, FATHI Z, SEYDIBEYOGLU M O, et al. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture[J]. International Journal of Biological Macromolecules, 2020, 146: 596-619. doi: 10.1016/j.ijbiomac.2019.12.181 [25] CHUA A S M, TAKABATAKE H, SATOH H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent[J]. Water Research, 2003, 37(15): 3602-3611. doi: 10.1016/S0043-1354(03)00252-5 [26] 陈玮, 陈志强, 温沁雪, 等. 利用剩余污泥驯化提取聚羟基烷酸脂的研究[J]. 给水排水, 2010, 46(S1): 131-134. [27] 王琴, 陈银广. 活性污泥合成聚羟基烷酸(PHAs)的研究进展[J]. 环境科学与技术, 2007, 30(5): 111-114. doi: 10.3969/j.issn.1003-6504.2007.05.039 [28] BENGTSSON S, HALLQUIST J, WERKER A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004 [29] MORGAN-SAGASTUME F, KARLSSON A, JOHANSSON P, et al. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus[J]. Water Research, 2010, 44(18): 5196-5211. doi: 10.1016/j.watres.2010.06.043 [30] RAMOS ENO, DELPINO L, VILLAR M, et al. Design and optimization of poly(hydroxyalkanoate)s production plants using alternative substrates[J]. Bioresource Technology, 2019, 289: 121699. doi: 10.1016/j.biortech.2019.121699 [31] MORGAN-SAGASTUME F, HEIMERSSON S, LAERA G, et al. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment[J]. Journal of Cleaner Production, 2016, 137: 1368-1381. doi: 10.1016/j.jclepro.2016.08.008 [32] LIN J H, LEE M C, SUE YS, et al. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6419-6430. doi: 10.1007/s00253-017-8386-2 [33] HAN X R, SATOH Y, KURIKI Y, et al. Polyhydroxyalkanoate production by a novel bacterium Massilia sp UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene[J]. Journal of Bioscience and Bioengineering, 2014, 118(5): 514-519. doi: 10.1016/j.jbiosc.2014.04.022 [34] YU L P, YAN X, ZHANG, X, et al. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2020, 59: 119-130. doi: 10.1016/j.ymben.2020.02.005 [35] NKRUMAH-AGYEEFI S, SCHOLZ C. Chemical modification of functionalized polyhydroxyalkanoates via “Click” chemistry: A proof of concept[J]. International Journal of Biological Macromolecules, 2017, 95: 796-808. doi: 10.1016/j.ijbiomac.2016.11.118 [36] MADKOUR M H, HEINRICH D, ALGHAMDI M A, et al. PHA recovery from biomass[J]. Biomacromolecules, 2013, 14(9): 2963-2972. doi: 10.1021/bm4010244 [37] RODRIGUEZ-PEREZ S, SERRANO A, PANTION A A, et al. Challenges of scaling-up PHA production from waste streams: A review[J]. Journal of Environmental Management, 2018, 205: 215-230. [38] MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8(12): 5812-5842. doi: 10.1039/C9TA12536A [39] CHOI S M, SHIN E J. The nanofication and functionalization of bacterial cellulose and its applications[J]. Nanomaterials, 2020, 10(3): 406. doi: 10.3390/nano10030406 [40] SHODA M, SUGANO Y. Recent advances in bacterial cellulose production[J]. Biotechnology and Bioprocess Engineering, 2005, 10(1): 1-8. doi: 10.1007/BF02931175 [41] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial Cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research, 2016, 49(1): 96-105. doi: 10.1021/acs.accounts.5b00380 [42] HUANG C, GUO H J, XIONG L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Carbohydrate Polymers, 2016, 136: 198-202. doi: 10.1016/j.carbpol.2015.09.043 [43] QIAO N, FAN X, ZHANG X Z, et al. Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids, 2019, 97: 105185. doi: 10.1016/j.foodhyd.2019.105185 [44] PARTE F G B, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414. doi: 10.1080/07388551.2020.1713721 [45] CHEN L, HONG F, YANG X X, et al. Biotransformation of wheat straw to bacterial cellulose and its mechanism[J]. Bioresource Technology, 2013, 135: 464-468. doi: 10.1016/j.biortech.2012.10.029 [46] LIN S P, CALVAR I L, CATCHMARK J M, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2191-2219. doi: 10.1007/s10570-013-9994-3 [47] DOYLE J D, PARSONS S A. Struvite formation, control and recovery[J]. Water Research, 2002, 36(16): 3925-3940. doi: 10.1016/S0043-1354(02)00126-4 [48] MUNCH E V, BARR K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams[J]. Water Research, 2001, 35(1): 151-159. doi: 10.1016/S0043-1354(00)00236-0 [49] MARTI N, PASTOR L, BOUZAS A, et al. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation[J]. Water Research, 2010, 44(7): 2371-2379. doi: 10.1016/j.watres.2009.12.043 [50] ELDUAYEN-ECHAVE B, LIZARRALDE I, LARRAONA G S, et al. A new mass-based discretized population balance model for precipitation processes: Application to struvite precipitation[J]. Water Research, 2019, 155: 26-41. doi: 10.1016/j.watres.2019.01.047 [51] LAHR R H, GOETSCH H E, HAIG S J, et al. Urine bacterial community convergence through fertilizer production: Storage, pasteurization, and struvite precipitation[J]. Environmental Science & Technology, 2016, 50(21): 11619-11626. [52] VANOTTI M B, DUBE P J, SZOGI A A, et al. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes[J]. Water Research, 2017, 112: 137-146. doi: 10.1016/j.watres.2017.01.045 [53] LI B, BOIARKINA I, YU W, et al. Phosphorous recovery through struvite crystallization: Challenges for future design[J]. Science of the Total Environment, 2019, 648: 1244-1256. doi: 10.1016/j.scitotenv.2018.07.166 [54] ROTHE M, KLEEBERG A, HUPFER M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews, 2016, 158: 51-64. doi: 10.1016/j.earscirev.2016.04.008 [55] ROTHE M, FREDERICHS T, EDER M, et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: A novel analytical approach[J]. Biogeosciences, 2014, 11(18): 5169-5180. doi: 10.5194/bg-11-5169-2014 [56] 郝晓地, 周健, 王崇臣. 蓝铁矿形成于污泥厌氧消化系统的验证与分析[J]. 中国给水排水, 2018, 34(13): 7-13. [57] 郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物: 蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234. [58] AZAM H M, FINNERAN K T. Fe(III) reduction-mediated phosphate removal as vivianite Fe3(PO4)2·8H2O in septic system wastewater[J]. Chemosphere, 2014, 97: 1-9. doi: 10.1016/j.chemosphere.2013.09.032 [59] 郝晓地, 周健, 王崇臣. 探究污泥厌氧消化系统中蓝铁矿生成的干扰因子[J]. 中国给水排水, 2018, 34(23): 1-7. [60] WU Y, LUO J Y, ZHANG Q, et al. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review[J]. Chemosphere, 2019, 226: 246-258. doi: 10.1016/j.chemosphere.2019.03.138
计量
- 文章访问数: 9481
- HTML全文浏览数: 9481
- PDF下载数: 288
- 施引文献: 0