[1] |
LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science, 2015, 347(6225): 1258832. doi: 10.1126/science.1258832
|
[2] |
LIU J G, DIAMOND J. Science and government - Revolutionizing China's environmental protection[J]. Science, 2008, 319(5859): 37-38. doi: 10.1126/science.1150416
|
[3] |
WANG X, LIU J X, REN N Q, et al. Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study[J]. Environmental Science & Technology, 2012, 46(10): 5542-5549.
|
[4] |
WANG X H, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China[J]. Journal of Cleaner Production, 2015, 94: 278-283. doi: 10.1016/j.jclepro.2015.02.007
|
[5] |
WANG X, DAIGGER G, LEE D J, et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature[J]. Science Advances, 2018, 4(8): eaaq0210. doi: 10.1126/sciadv.aaq0210
|
[6] |
ZODROW K R, LI Q, BUONO R M, et al. Advanced materials, technologies, and complex systems analyses: Emerging opportunities to enhance urban water security[J]. Environmental Science & Technology, 2017, 51(18): 10274-10281.
|
[7] |
ANUPAMA, RAVINDRA P. Value-added food: Single cell protein[J]. Biotechnology Advances, 2000, 18(6): 459-479. doi: 10.1016/S0734-9750(00)00045-8
|
[8] |
王宇灵, 覃瑞, 刘虹, 等. 单细胞蛋白应用于食品工业的现状和展望[J]. 中国食物与营养, 2019, 25(10): 29-32. doi: 10.3969/j.issn.1006-9577.2019.10.006
|
[9] |
RITALA A, HAKKINEN S T, TOIVARI M, et al. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016[J]. Frontiers in Microbiology, 2017, 8: 2009. doi: 10.3389/fmicb.2017.02009
|
[10] |
MATASSA S, BOON N, PIKAAR I, et al. Microbial protein: future sustainable food supply route with low environmental footprint[J]. Microbial Biotechnology, 2016, 9(5): 568-575. doi: 10.1111/1751-7915.12369
|
[11] |
PIKAAR I, MATASSA S, RABAEY K, et al. Microbes and the next nitrogen revolution[J]. Environmental Science & Technology, 2017, 51(13): 7297-7303.
|
[12] |
MATASSA S, VERSTRAETE W, PIKAAR I, et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria[J]. Water Research, 2016, 101: 137-146. doi: 10.1016/j.watres.2016.05.077
|
[13] |
VOLOVA T G, BARASHKOV V A. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms[J]. Applied Biochemistry and Microbiology, 2010, 46(6): 574-579. doi: 10.1134/S0003683810060037
|
[14] |
JIANG Y, MAY H D, LU L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation[J]. Water Research, 2019, 149: 42-55. doi: 10.1016/j.watres.2018.10.092
|
[15] |
REN Z J. Microbial fuel cells: Running on gas[J]. Nature Energy, 2017, 2(6): 17093. doi: 10.1038/nenergy.2017.93
|
[16] |
STRONG P J, XIE S, CLARKE W P. Methane as a Resource: Can the methanotrophs add Value?[J]. Environmental Science & Technology, 2015, 49(7): 4001-4018.
|
[17] |
ALLOUL A, GANIGUÉ R, SPILLER M, et al. Capture-ferment-upgrade: A three-step approach for the valorization of sewage organics as commodities[J]. Environmental Science & Technology, 2018, 52(12): 6729-6742.
|
[18] |
WANG L, LIN S. Mechanism of selective ion removal in membrane capacitive deionization for water softening[J]. Environmental Science & Technology, 2019, 53(10): 5797-5804.
|
[19] |
WANG L, DYKSTRA J E, LIN S. Energy efficiency of capacitive deionization[J]. Environmental Science & Technology, 2019, 53(7): 3366-3378.
|
[20] |
WANG L, LIN S. Membrane capacitive deionization with constant current vs constant voltage charging: Which is better?[J]. Environmental Science & Technology, 2018, 52(7): 4051-4060.
|
[21] |
SCHMIDT C, KRAUTH T, WAGNER S. Export of plastic debris by rivers into the sea[J]. Environmental Science & Technology, 2017, 51(21): 12246-12253.
|
[22] |
ALBUQUERQUE M G E, TORRES C A V, REIS M A M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: Effect of the influent substrate concentration on culture selection[J]. Water Research, 2010, 44(11): 3419-3433. doi: 10.1016/j.watres.2010.03.021
|
[23] |
AMARO T, ROSA D, COM G, et al. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production[J]. Frontiers in Microbiology, 2019, 10: 992. doi: 10.3389/fmicb.2019.00992
|
[24] |
TARRAHI R, FATHI Z, SEYDIBEYOGLU M O, et al. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture[J]. International Journal of Biological Macromolecules, 2020, 146: 596-619. doi: 10.1016/j.ijbiomac.2019.12.181
|
[25] |
CHUA A S M, TAKABATAKE H, SATOH H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent[J]. Water Research, 2003, 37(15): 3602-3611. doi: 10.1016/S0043-1354(03)00252-5
|
[26] |
陈玮, 陈志强, 温沁雪, 等. 利用剩余污泥驯化提取聚羟基烷酸脂的研究[J]. 给水排水, 2010, 46(S1): 131-134.
|
[27] |
王琴, 陈银广. 活性污泥合成聚羟基烷酸(PHAs)的研究进展[J]. 环境科学与技术, 2007, 30(5): 111-114. doi: 10.3969/j.issn.1003-6504.2007.05.039
|
[28] |
BENGTSSON S, HALLQUIST J, WERKER A, et al. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production[J]. Biochemical Engineering Journal, 2008, 40(3): 492-499. doi: 10.1016/j.bej.2008.02.004
|
[29] |
MORGAN-SAGASTUME F, KARLSSON A, JOHANSSON P, et al. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus[J]. Water Research, 2010, 44(18): 5196-5211. doi: 10.1016/j.watres.2010.06.043
|
[30] |
RAMOS ENO, DELPINO L, VILLAR M, et al. Design and optimization of poly(hydroxyalkanoate)s production plants using alternative substrates[J]. Bioresource Technology, 2019, 289: 121699. doi: 10.1016/j.biortech.2019.121699
|
[31] |
MORGAN-SAGASTUME F, HEIMERSSON S, LAERA G, et al. Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment[J]. Journal of Cleaner Production, 2016, 137: 1368-1381. doi: 10.1016/j.jclepro.2016.08.008
|
[32] |
LIN J H, LEE M C, SUE YS, et al. Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly(3-hydroxybutyrate) (PHB) production[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6419-6430. doi: 10.1007/s00253-017-8386-2
|
[33] |
HAN X R, SATOH Y, KURIKI Y, et al. Polyhydroxyalkanoate production by a novel bacterium Massilia sp UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene[J]. Journal of Bioscience and Bioengineering, 2014, 118(5): 514-519. doi: 10.1016/j.jbiosc.2014.04.022
|
[34] |
YU L P, YAN X, ZHANG, X, et al. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2020, 59: 119-130. doi: 10.1016/j.ymben.2020.02.005
|
[35] |
NKRUMAH-AGYEEFI S, SCHOLZ C. Chemical modification of functionalized polyhydroxyalkanoates via “Click” chemistry: A proof of concept[J]. International Journal of Biological Macromolecules, 2017, 95: 796-808. doi: 10.1016/j.ijbiomac.2016.11.118
|
[36] |
MADKOUR M H, HEINRICH D, ALGHAMDI M A, et al. PHA recovery from biomass[J]. Biomacromolecules, 2013, 14(9): 2963-2972. doi: 10.1021/bm4010244
|
[37] |
RODRIGUEZ-PEREZ S, SERRANO A, PANTION A A, et al. Challenges of scaling-up PHA production from waste streams: A review[J]. Journal of Environmental Management, 2018, 205: 215-230.
|
[38] |
MA L N, BI Z J, XUE Y, et al. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8(12): 5812-5842. doi: 10.1039/C9TA12536A
|
[39] |
CHOI S M, SHIN E J. The nanofication and functionalization of bacterial cellulose and its applications[J]. Nanomaterials, 2020, 10(3): 406. doi: 10.3390/nano10030406
|
[40] |
SHODA M, SUGANO Y. Recent advances in bacterial cellulose production[J]. Biotechnology and Bioprocess Engineering, 2005, 10(1): 1-8. doi: 10.1007/BF02931175
|
[41] |
WU Z Y, LIANG H W, CHEN L F, et al. Bacterial Cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research, 2016, 49(1): 96-105. doi: 10.1021/acs.accounts.5b00380
|
[42] |
HUANG C, GUO H J, XIONG L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Carbohydrate Polymers, 2016, 136: 198-202. doi: 10.1016/j.carbpol.2015.09.043
|
[43] |
QIAO N, FAN X, ZHANG X Z, et al. Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids, 2019, 97: 105185. doi: 10.1016/j.foodhyd.2019.105185
|
[44] |
PARTE F G B, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414. doi: 10.1080/07388551.2020.1713721
|
[45] |
CHEN L, HONG F, YANG X X, et al. Biotransformation of wheat straw to bacterial cellulose and its mechanism[J]. Bioresource Technology, 2013, 135: 464-468. doi: 10.1016/j.biortech.2012.10.029
|
[46] |
LIN S P, CALVAR I L, CATCHMARK J M, et al. Biosynthesis, production and applications of bacterial cellulose[J]. Cellulose, 2013, 20(5): 2191-2219. doi: 10.1007/s10570-013-9994-3
|
[47] |
DOYLE J D, PARSONS S A. Struvite formation, control and recovery[J]. Water Research, 2002, 36(16): 3925-3940. doi: 10.1016/S0043-1354(02)00126-4
|
[48] |
MUNCH E V, BARR K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams[J]. Water Research, 2001, 35(1): 151-159. doi: 10.1016/S0043-1354(00)00236-0
|
[49] |
MARTI N, PASTOR L, BOUZAS A, et al. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation[J]. Water Research, 2010, 44(7): 2371-2379. doi: 10.1016/j.watres.2009.12.043
|
[50] |
ELDUAYEN-ECHAVE B, LIZARRALDE I, LARRAONA G S, et al. A new mass-based discretized population balance model for precipitation processes: Application to struvite precipitation[J]. Water Research, 2019, 155: 26-41. doi: 10.1016/j.watres.2019.01.047
|
[51] |
LAHR R H, GOETSCH H E, HAIG S J, et al. Urine bacterial community convergence through fertilizer production: Storage, pasteurization, and struvite precipitation[J]. Environmental Science & Technology, 2016, 50(21): 11619-11626.
|
[52] |
VANOTTI M B, DUBE P J, SZOGI A A, et al. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes[J]. Water Research, 2017, 112: 137-146. doi: 10.1016/j.watres.2017.01.045
|
[53] |
LI B, BOIARKINA I, YU W, et al. Phosphorous recovery through struvite crystallization: Challenges for future design[J]. Science of the Total Environment, 2019, 648: 1244-1256. doi: 10.1016/j.scitotenv.2018.07.166
|
[54] |
ROTHE M, KLEEBERG A, HUPFER M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J]. Earth-Science Reviews, 2016, 158: 51-64. doi: 10.1016/j.earscirev.2016.04.008
|
[55] |
ROTHE M, FREDERICHS T, EDER M, et al. Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: A novel analytical approach[J]. Biogeosciences, 2014, 11(18): 5169-5180. doi: 10.5194/bg-11-5169-2014
|
[56] |
郝晓地, 周健, 王崇臣. 蓝铁矿形成于污泥厌氧消化系统的验证与分析[J]. 中国给水排水, 2018, 34(13): 7-13.
|
[57] |
郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物: 蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234.
|
[58] |
AZAM H M, FINNERAN K T. Fe(III) reduction-mediated phosphate removal as vivianite Fe3(PO4)2·8H2O in septic system wastewater[J]. Chemosphere, 2014, 97: 1-9. doi: 10.1016/j.chemosphere.2013.09.032
|
[59] |
郝晓地, 周健, 王崇臣. 探究污泥厌氧消化系统中蓝铁矿生成的干扰因子[J]. 中国给水排水, 2018, 34(23): 1-7.
|
[60] |
WU Y, LUO J Y, ZHANG Q, et al. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review[J]. Chemosphere, 2019, 226: 246-258. doi: 10.1016/j.chemosphere.2019.03.138
|