-
重型柴油车的尾气排放对大气中PM2.5和NOx等污染物的贡献很大。据估算,重型柴油车的PM排放量能占机动车排放总量的78%,其中NOx排放量占机动车排放总量的57.3%[1-2]。根据《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国VI阶段)》(GB 17691-2018),我国将分别在2021年7月1日和2023年7月1日实施重型柴油车国VI-a阶段和VI-b阶段排放标准。为满足柴油机的国VI排放要求,后处理装置通常采用柴油机催化氧化(diesel oxidation catalyst,DOC)-颗粒物捕集器(diesel particulate filter,DPF)-选择性催化氧化(selective catalytic reduction,SCR)联用的模式。其中,DPF用于减少颗粒物排放、SCR用于减少NOx的排放。目前,我国符合国VI排放标准的发动机及后处理核心技术与国外相比仍存在较大差距[3-4]。
实际应用较多的低温SCR系统对NOx的转化效率不高。城市邮政车、公交车、环卫车运行时经常启停,在排气温度较低时尿素SCR系统无法正常运行[5-8]。为达到国IV、国V排放标准,SCR系统的平均转化效率需达到75%~85%。而由于SCR控制策略往往采用基于目标转化效率的开环控制策略[9-10],故到了国VI阶段,SCR系统平均转化效率应提升至90%~98%。为达到更高的转化效率,需要按比例过量喷射尿素,但尿素结晶的风险会随之增大。另外,国VI标准下调了NH3泄漏限值,还需在SCR下游安装氨捕集器(ammonia slip catalyst, ASC)。而在排气温度高于380 ℃时,还应考虑喷入排气气流中的尿素水溶液可能快速脱水转变成三聚氰胺沉积物的问题。这种现象会导致排气管路堵塞、发动机背压增加,由此带来功率下降、油耗上升的事件时常发生[11]。因此,降低或避免尿素结晶是亟需解决的难题[12-13]。
固态SCR技术是近年来出现的一种降低NOx排放的新技术。LACIN等[14]的研究结果表明,固态SCR在FTP72和US06测试循环有较高的NOx转化效率;FULKS等[15]对不同种类的固态氨存储材料的氨气释放特性进行了研究,发现固态SCR技术携带氨的体积密度和纯液体氨相当,在相同的容积下,可比尿素SCR系统携带更多的有效还原剂;SHOST等[16]的研究结果表明,固态SCR可将氨气直接喷射到排气管中,有较大的NOx减排潜力[16-17]。因此,固态SCR能够避免尿素SCR系统低温活性不足、排气管路结晶、低温结冰等缺陷,是一种有前景的柴油机NOx排放控制技术[18-21]。
本研究为探讨固态SCR技术对柴油机尾气的NOx减排特性,分别在发动机台架及车载道路上开展实验,并与尿素SCR技术进行了对比分析,以期为降低我国城市柴油车NOx污染物排放、轻型柴油车国VI排放标准达标提供参考。
固态SCR技术降低柴油机尾气NOx的排放
Reduction of NOx emissions from diesel engines by solid SCR technology
-
摘要: 为解决尿素SCR技术在低排气温度时NOx转化效率低、整车实际运行过程中易产生尿素结晶的问题,在发动机台架和实际道路开展了实验,研究固态SCR对NOx污染物的排放影响。结果表明:携带相同质量还原剂时,固态SCR系统的体积仅为尿素SCR系统的1/3;当排气温度为160 ℃时,固态SCR系统对NOx转化效率可达到40%;相同氨氮比下,WHSC循环对NOx转化效率提升了3.3%,WHTC循环对NOx转化效率提升了4.5%;将固态SCR起喷温度降低到160 ℃后,NOx转化效率提升明显,较200 ℃起喷温度的固态SCR系统、尿素SCR系统分别提升9.7%和15.5%。基于功基窗口法对固态SCR与尿素SCR的NOx比排放进行了分析,功基窗口数在(0,20]时,匹配尿素SCR系统的柴油车NOx污染物排放量,分别是160 ℃起喷温度和200 ℃起喷温度固态SCR系统的2.38和1.73倍。Abstract: The urea-SCR technology is prone to low NOx conversion efficiency and urea crystallization in the low exhaust temperature actual operation process of the vehicle. To address this, engine test bench studies are conducted to investigate the effectiveness of solid SCR technology on NOx emission reduction. Results show that the volume of the solid SCR system is only 1/3 of the urea-SCR when carrying the same amount of reductant. The NOx conversion efficiency of the solid SCR system reaches 40% when the exhaust temperature is 160 ℃. Based on the same ammonia nitrogen ratio setting, the NOx conversion efficiency improves by 3.3% and 4.5% by applying the WHSC and WHTC cycles respectively. The NOx conversion efficiency improves significantly when the starting temperature of the solid SCR is reduced to 160 ℃, which is 9.7% and 15.5% higher than that of the solid SCR system and urea-SCR systems at 200 ℃, respectively. The emission of NOx pollutants from diesel vehicles with the urea-SCR system is significantly higher, which is 2.38 and 1.73 times that of solid SCR system with injection temperature at 160 ℃ and 200 ℃ according to the work based windows analysis ((0, 20]).
-
表 1 不同还原剂的储氨密度
Table 1. Ammonia storage density of different reductant
还原剂 摩尔质量/(g·mol−1) 密度/(g·cm−3) 质量/g 体积/cm3 纯液氨 17 0.61 0.57 0.93 固态SCR 60 1.33 1.0 0.75 尿素SCR — 1.09 3.08 2.83 Sr(NH3)8Cl2 294.5 1.30 1.23 0.95 -
[1] LIU Y S, GE Y S, TAN J W, et al. Emission characteristic of off-shore fishing ships of Yellow Bo Sea, China[J]. Journal Environmental Sciences, 2018, 65: 83-89. doi: 10.1016/j.jes.2017.02.020 [2] 刘颖帅, 葛蕴珊, 谭建伟. 基于国Ⅵ标准的重型柴油车气态污染物排放控制技术[J]. 环境工程学报, 2019, 13(7): 1703-1710. doi: 10.12030/j.cjee.201903060 [3] ZVONIMIR P, TIBOR B, MILAN V, et al. Pollutant emissions in diesel engines influence of biofuel on pollutant formation[J]. Journal of Environmental Management, 2017, 203(3): 1038-1046. [4] BASKAR P, KUMAR A. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air[J]. Alexandria Engineering Journal, 2017, 56(1): 137-146. doi: 10.1016/j.aej.2016.09.014 [5] 张岩. 重型柴油机SCR催化器的CFD仿真分析[D]. 长春: 吉林大学, 2012. [6] 胡振奇. 重型柴油机SCR系统尿素喷射控制策略研究[D]. 长春: 吉林大学, 2012. [7] SHEN B X, LI Z J, LI J, et al. Development of a 1D urea-SCR system model coupling with wall film decomposition mechanism based on engine bench test data[J]. Energy Procedia, 2017, 142: 3492-3497. doi: 10.1016/j.egypro.2017.12.235 [8] QIU T, LI X C, LIANG H, et al. A method for estimating the temperature downstream of the SCR catalyst in diesel engines[J]. Energy, 2014, 68: 311-317. doi: 10.1016/j.energy.2014.02.101 [9] FU M L, GE Y S, WANG X, et al. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns[J]. Science of the Total Environment, 2013, 452-453: 222-226. doi: 10.1016/j.scitotenv.2013.02.076 [10] BENDRICH M, SCHEUER A, HAYES R E, et al. Unified mechanistic model for standard SCR, fast SCR, and NO2 SCR over a copper chabazite catalyst[J]. Applied Catalysis B: Environmental, 2018, 222: 76-87. doi: 10.1016/j.apcatb.2017.09.069 [11] ZHENG G Y, ADAM F, ADAM K, et al. Investigation of urea deposits in urea SCR systems for medium and heavy duty trucks[R]. SAE Paper, 2010: 6-20. [12] AMIR R F, ISABElLLA N, ENRICO T. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment[J]. Catalysis Today, 2017, 297: 10-16. doi: 10.1016/j.cattod.2017.05.098 [13] 张纪元, 李国祥, 孙少军, 等. 车用柴油机Urea-SCR催化器优化设计及实验研究[J]. 内燃机工程, 2013, 34(1): 57-61. [14] LACIN F, KOTRBA A, HAYWORTH G, et al. Demonstrating an improved approach to NOx reduction via a solid reductant[R]. SAE Paper, 2011: 7-22. [15] FULKS G, GALEN B F, KEN R, et al. A Review of solid materials as alternative ammonia sources lean NOx reduction with SCR[R]. SAE Paper, 2009: 90-97. [16] SHOST M, NOETZEL J, WU M C, et al. Monitoring, feedback and control of urea SCR dosing systems for NOx reduction[R]. SAE Paper 2008: 13-25. [17] 刘明, 何超, 李加强, 等. 柴油车固体SCR系统运行及NOx排放特性研究[J]. 车用发动机, 2019(1): 53-57. [18] 袁文莉, 孙涛. 重型柴油机固体尿素SCR控制系统设计[J]. 农业装备与车辆工程, 2018, 56(4): 54-58. doi: 10.3969/j.issn.1673-3142.2018.04.013 [19] LIU Y S, TAN J W. Green traffic-oriented heavy-duty vehicle emission characteristics of China VI based on portable emission measurement systems[J]. IEEE Access, 2020, 222: 1-9. [20] COLOMBO M, NOVA I, TRONCONI E. A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst[J]. Catalysis Today, 2010, 151(3/4): 223-230. [21] COLOMBO M, NOVA I, TRONCONI E. Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment[J]. Catalysis Today, 2012, 197(1): 243-255. doi: 10.1016/j.cattod.2012.09.002 [22] KIRSTEN L, LOUISE O. Deactivation of $ {\rm{Cu/SAPO}}_{\rm{4}}^{{\rm{ - 3}}}$ during low-temperature NH3-SCR[J]. Applied Catalysis B: Environmental, 2015, 165: 192-199. doi: 10.1016/j.apcatb.2014.09.067[23] CHUN M W, YOON C S, KIM H. Basic study on the chemical method for the prevention of recombination in gas produced from decomposition of ammonium carbamate to the solid SCR in a diesel engine[J]. Transactions of the Korean Society of Mechanical Engineers, 2017, 41: 785-793. doi: 10.3795/KSME-B.2017.41.12.785 [24] LEE H, YOON C S, KIM H. A study on reaction rate of solid SCR for NOx reduction of exhaust emissions in diesel engine[R]. SAE Paper, 2013: 21-26.