Processing math: 100%

pH分区供浆模式强化气动旋流塔湿法脱硫效率

郭志, 刘志敏. pH分区供浆模式强化气动旋流塔湿法脱硫效率[J]. 环境工程学报, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
引用本文: 郭志, 刘志敏. pH分区供浆模式强化气动旋流塔湿法脱硫效率[J]. 环境工程学报, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
GUO Zhi, LIU Zhimin. Wet desulfurization efficiency based on dual-pH slurry supply coupled aerodynamic swirl tower[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
Citation: GUO Zhi, LIU Zhimin. Wet desulfurization efficiency based on dual-pH slurry supply coupled aerodynamic swirl tower[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078

pH分区供浆模式强化气动旋流塔湿法脱硫效率

    作者简介: 郭志(1987—),男,硕士,工程师。研究方向:烟气净化、固废处理。E-mail:guozhikd@126.com
    通讯作者: 郭志, E-mail: guozhikd@126.com
  • 基金项目:
    天津市科技计划项目(17ZXSTSF00030,18YFYSZC00070,19ZXSZSN00050)
  • 中图分类号: X701.3

Wet desulfurization efficiency based on dual-pH slurry supply coupled aerodynamic swirl tower

    Corresponding author: GUO Zhi, guozhikd@126.com
  • 摘要: 为了充分利用气动旋流强化单塔循环脱硫效率的优势,实现燃煤电站烟气SO2超低排放,采用pH分区供浆耦合气动旋流塔技术脱除燃煤烟气中的SO2,并研究了pH分区供浆模式下浆液pH及其差值的变化,分析了pH分区供浆对气动旋流塔脱硫性能的影响。结果表明:空塔喷淋运行工况,pH分区供浆对脱硫效率影响较小;单层循环pH分区供浆耦合气动旋流工况,pH分区供浆的脱硫效率高于主浆池直接供浆,且对脱硫效率的促进作用随主浆池pH增大而减弱。此外,双层循环pH分区供浆耦合气动旋流工况下,pH分区供浆量越大脱硫效率提高越多,且随主浆池pH增大而逐渐减弱。以上研究结果证明,pH分区供浆可提高气动旋流塔的脱硫性能。
  • 盐酸林可霉素(LCM)属于林可酰胺类抗生素,用于治疗各种细菌感染,对革兰氏阳性菌有灭杀作用,因此广泛应用于人类及兽类相关疾病的治疗、预防等等领域[1]. 动物及人体代谢相关研究表明,该药物在体内代谢速度慢,人体有大概5%—15%的LCM以原形排出,而动物体内60%的林可酰胺类药物以原形排出[2-3],因此相当部分LCM会排泄出体外并进入环境水体. 然而却很少有针对LCM在自然条件及人工强化条件下降解的去除研究,同时对其降解过程的中间产物、降解路径也知之甚少.

    在污水处理厂或自来水厂中,UV/H2O2结合是去除水中污染物的有效间接光降解方法之一[4-6]. 其主要原理被认为是通过H2O2的光解产生活性较强的羟基自由基(·OH),羟基自由基(·OH)可以以很高的速率并且非选择性地氧化有机污染物[7-8],同时在该反应过程中不会引入新的污染物. 因此本文主要研究LCM在UV/H2O2体系中不同条件下的降解情况,同时通过鉴定LCM降解过程的中间产物,提出LCM在该反应中的降解途径,并对反应过程的中间产物进行毒性预测. 为水环境中残留的林可酰胺类的抗生素类药物的去除与控制提供有效思路,为水质安全保障提供理论依据和技术支撑.

    实验材料:盐酸林可霉素(纯度>95%)购自于麦克林试剂(上海),乙腈(HPLC)、甲醇(HPLC)购自于Honeywell试剂(广州),乙酸铵(HPLC)、异丙醇(HPLC)购自于科密欧试剂(上海),30%过氧化氢(H2O2)、硫代硫酸钠、腐殖酸购自于阿拉丁试剂(上海).

    实验仪器及分析软件:岛津TOC-L VCPN、高效液相色谱质谱联用仪(HPLC-MS/MS, 5500 Q-trap, AB Sciex, USA)、高效液相色谱串联飞行时间质谱仪(AB-Triple TOF 5600+, LC20D HPLC, X500R, AB SCIEX, USA)、SCIEXOS(1.3.1)、TEST,version 5.1,EPA,USA、磁力搅拌器、pH计(PHS-3E)、紫外光灯(20 W,254 nm).

    该实验使在配备有20 W且波长为254 nm的紫外光灯的台式设备下进行,具体实验装置见图1. 在直径为10 cm的结晶皿中加入100 mL初始浓度为10 mg·L−1的LCM和H2O2的混合溶液,研究不同条件下对LCM降解影响. 在一定时间间隔取样1 mL的样品放入离心管中,在实验过程中利用硫代硫酸钠进行淬灭反应,每组实验均设置3组平行样.

    图 1  光催化装置示意图
    Figure 1.  Schematic diagram of photochemical apparatus

    使用HPLC-MS/MS测定实验过程中LCM的浓度变化情况. 使用C18柱(2.1 mm×150 mm,5 μm,SHARPSIL-U)以0.3 mL·min−1的流速分离相关组分,进样量为5 μL. MS/MS检测器的操作参数见表1. 母离子/子离子的选择及碰撞能量见表2.

    表 1  MS/MS检测器的运行参数
    Table 1.  Operation parameters of the MS/MS detector
    参数 Parameter离子化方式Ionisation扫描模式Scan type离子源温度TEM气帘气CUR雾化气GS1辅助气GS2CAD电喷雾电压IS扫描时间 Total scan time
    分析条件 Analytical conditionsESIMRM500 ℃30 psi45 psi30 psi8 psi550010 min
     | Show Table
    DownLoad: CSV
    表 2  化合物的MRM参数和保留时间
    Table 2.  MRM parameters and retention times of compounds
    分析物 Analyte母离子 Precursor ion (m/z)子离子 Product ion (m/z)DP/ VCE/ eV
    Lincomycin 1407.0126.05033.12
    Lincomycin 2407.0359.03024.72
     | Show Table
    DownLoad: CSV

    使用LCMS-TOF 5600+(LC-TOF-MS)分析了LCM在UV/H2O2过程中的降解产物. 使用ZOBAX SB-C18柱(4.6 mm×150 mm,5 μm)以0.3 mL·min−1的流速分离相关组分,进样量为5 μL.

    使用岛津TOC-L VCPN分析仪测量降解过程中的总有机碳(TOC),通过TC-IC法测量TOC的衰减来评估实验期间LCM的矿化程度,以对LCM的降解程度进行评估.

    利用软件工具(TEST, version 5.1,EPA,USA)来预测中间产物的潜在毒性. 该软件是根据化学结构的物理特性预测毒性的数学模型,可提供48 h水蚤LC50预测值、大鼠口服LD50数据集值、Ames诱变值等.

    图2为pH7.3时LCM在不同条件下的降解情况. 结果表明,仅有紫外线照射时LCM几乎不发生分解,该现象与Paola等的研究一致[9],同时在仅有H2O2条件下LCM也基本不会被氧化. 但在UV/H2O2的共同作用下,LCM可被迅速降解,且反应先快后慢,如反应5 min时即可被去除60%,15 min后反应速率显著降低,至反应结束30 min时去除率可达98%. 这是因为紫外线可以直接激活H2O2产生羟基自由基,如公式(1)和公式(2)所示·OH具有极强的得电子能力,其氧化电位为2.8 V,可以通过寻找氢、加成和电子转移等方式攻击有机化合物[5,10].

    图 2  不同条件下LCM的降解
    Figure 2.  Degradation of Lincomycin hydrochloride during different treatment method
    [LCM]=10 mg·L−1, [H2O2]=50 mg·L−1
    H2O2+hvOH (1)
    OH+LCMTP (2)

    在UV/H2O2体系中研究了10—90 mg·L−1的H2O2浓度对LCM分解的影响. 在本研究中,利用准一级动力学方程拟合水该反应的实验数据. 拟合结果表明,投加不同浓度的H2O2,该反应体系的R2均大于0.95,因此该反应过程服从准一级反应动力学,这与大多数药物的光化学降解遵循准一级动力学模型相同[10-12].

    lnCC0=kt (3)

    其中,C0(mg·L−1)为LCM初始浓度,C(mg·L−1)为t时刻LCM浓度;k(min−1)为拟一级降解速率常数;t(min)是反应时间. 检测反应中LCM浓度随时间的变化情况,拟合–ln(C/C0)—t绘制图3.

    图 3  不同初始H2O2浓度下的降解动力学
    Figure 3.  Decomposition kinetics at different initial H2O2 concentrations
    [LCM]=10 mg·L−1

    当H2O2浓度从10 mg·L−1逐渐增加时,由于更多的紫外线被H2O2吸收,产生的羟基自由基也随之增加,导致反应速率加快. 因此,当H2O2浓度为10 mg·L−1时,一级反应速率常数为0.0615 min−1,随着H2O2浓度增大,反应速率常数也随之增加,在浓度为50 mg·L−1时,速率常数达到0.1286 min−1,这时再增加H2O2的浓度,反应速率开始降低,当浓度为90 mg·L−1时,反应速率为0.0875 min−1. 这种现象是因为在较高的H2O2浓度下,羟基自由基会与过量的H2O2反应生成过氧自由基,并且新生成的过氧自由基也会与H2O2反应,导致H2O2的利用率降低. 从而造成了投加高浓度的H2O2时,该反应的降解速率反而降低,在利用UV/H2O2体系降解药物的许多研究中都出现了类似的情况[10,12-13].

    为了探究环境条件对LCM降解的影响,研究了LCM在不同pH和不同浓度腐殖酸时的降解情况(如图4). 在pH较低的时候发现LCM表现出了极好的降解速率,随着pH的增大,降解速率逐渐降低. 这可能是由以下原因造成的,一方面是LCM在酸性条件下的不稳定性,导致其在酸性条件下更容易被分解,导致降解速率较高[14]. 另一方面是在碱性条件下·OH容易与OH-发生反应形成O·,如公式(4),而O·-的氧化能力比·OH低;并且HO2-与H2O2反应,降低了H2O2的利用率,从而间接减少了羟基自由基的形成,如公式(5);此外H2O2在碱性条件下会加快自我分解,也会导致产生的羟基自由基减少,如公式(6)[12-13,15]. 因此在天然水体中利用UV/H2O2去除LCM可以通过调节pH至酸性或中性,以加快反应速率.

    图 4  不同的pH值(a)和腐殖酸(b)浓度下LCM在UV/H2O2氧化过程中的降解曲线
    Figure 4.  Decomposition curves of LCM in UV/H2O2 oxidation process under different pH(a)and humic acid(b)
    [LCM]=10 mg·L−1, [H2O2]=50 mg·L−1
    OH+OHH2O+O (4)
    HO2+H2O2H2O+O2+OH (5)
    2H2O2H2O+O2 (6)

    由于腐殖酸是地表水体中常见的溶解性有机物,并且会清除自由基,从而降低反应速率[16-17];也有报道称,腐殖酸可以与水生环境中的污染物反应形成光氧化剂来促进反应[18]. 因此,为了研究腐殖酸对LCM降解过程的影响,投加不同浓度的腐殖酸到UV/H2O2体系中. 实验结果表明,即使少量的腐殖酸也会对该反应产生抑制效果,并且随着腐殖酸的添加,LCM的降解速率不断降低. 因此,该体系中存在腐殖酸会降低LCM的降解速率,如果在天然水体中去除LCM,应该先去除腐殖酸以达到较好的降解效果.

    LCM是一种抗生素,属于林可酰胺类,由吡喃糖环、酰胺部分和吡咯烷环组成,LCM中有两个可能的氧化攻击位点:硫甲基和吡咯烷氮[9,19]. 为了研究LCM在UV/H2O2体系中的降解机理,以及对LCM降解过程中产生的中间产物进行毒性预测,使用LC-TOF-MS分析和电喷雾电离(ESI)检测来鉴定降解过程中的中间产物.

    根据保留时间、分子离子、质量碎片离子和经验公式,在LCM降解过程中共鉴定出22种主要副产物(TPs),其中16种为比较确定的产物结构,6种为猜测可能存在的产物结构. LCM的C—S键容易受到·OH的攻击,造成硫甲基的脱离[20];LCM的酰胺部分和吡喃糖环上会失去羟基和丢失一分子水,吡咯烷环上会失去一分子水,并且还会发生吡喃糖环的裂解[19]. 根据鉴定的中间产物的结构式,提出了以下LCM的6种降解途径(图5).

    图 5  UV/H2O2氧化过程中LCM的降解途径
    Figure 5.  Proposed decomposition pathways of LCM during UV/H2O2 oxidation process.

    使用TOC-L VCPN分析仪测定了LCM在UV/H2O2处理过程中总有机碳(TOC)的变化. 如图6所示,反应20 min后,LCM的去除率为92%,但TOC基本保持不变. 反应30 min后,LCM的去除率达到98.4%时,TOC仅下降0.8%;在继续反应过程中,当反应时间为60 min时,TOC去除率为28.4%.

    图 6  UV/H2O2过程中LCM分解过程中的矿化情况
    Figure 6.  Mineralization during the decomposition of LCM during the UV/H2O2 process
    [LCM]=10 mg·L−1, [H2O2]=50 mg·L−1

    由此可见,在短时间内大部分LCM在降解过程中分解为中间有机产物,仅有少部分LCM完全矿化,然而在长时间的反应过程后,LCM可能最终会被完全矿化,但该过程缓慢,在环丙羧酸和双氯芬酸降解过程中也有类似的报告[10,21]. 因此,研究LCM降解过程中产生的中间产物并评价中间产物的毒性就显得尤为重要,利用QSAR对LCM的中间产物进行毒性预测. Ames致畸性

    LCM和其转化产物的QSAR毒性预测结果可见于表3. 对于大型蚤48 hLC50,LCM属于没有急性毒性,而LCM的转化产物LCM-280、LCM-374、LCM-170和LCM-127的大型蚤LC50落在10—100 mg·L−1的范围内,在全球化学品统一分类和标签制度的规定中,被判定为对大型蚤具有有害效应,LCM-356的预测值为8.61 mg·L−1,被判定为具有中等毒性. 而在小鼠经口染毒LD50预测中,LCM的预测值为1291.60 mg·kg−1,在全球化学品统一分类和标签制度的规定中,属于4类(300 mg·kg−1<LD50<2000 mg·kg−1)具有轻微危害作用,而LCM的转化产物LCM-280、LCM-340和LCM-356的LD50的预测值落在50—300 mg·L−1的范围内,属于具有中度危害的物质. 在Ames致畸性预测方面,LCM及其产物均呈阴性,显示没有致畸风险.

    表 3  T.E.S.T.软件计算的药品和中间产物的毒性评估
    Table 3.  Toxicity assessment for pharmaceuticals and transformation products calculated by T.E.S.T. software.
    化合物名称Compound name大型蚤/(mg·L−1)Daphnia magna LC50(48 h)小鼠经口给毒/(mg·kg−1)Oral rat LD50Ames致畸性Ames Mutagenicity
    LCM771.871291.600.07(Mutagenicity Negative)
    LCM-TP390345.29557.280.08(Mutagenicity Negative)
    LCM-TP344523.572056.440.03(Mutagenicity Negative)
    LCM-TP328221.902117.800.16(Mutagenicity Negative)
    LCM-TP3461598.072459.670.01(Mutagenicity Negative)
    LCM-TP312163.37538.60−0.07(Mutagenicity Negative)
    LCM-TP260735.752201.190.23(Mutagenicity Negative)
    LCM-TP316579.492862.690.18(Mutagenicity Negative)
    LCM-TP298127.12985.530.08(Mutagenicity Negative)
    LCM-TP28089.41143.370.07(Mutagenicity Negative)
    LCM-TP256124.693396.180.16(Mutagenicity Negative)
    LCM-TP388171.95370.500.04(Mutagenicity Negative)
    LCM-TP37467.52N/A0.36(Mutagenicity Negative)
    LCM-TP340136.19296.220.02(Mutagenicity Negative)
    LCM-TP32242.59211.300.17(Mutagenicity Negative)
    LCM-TP26868.86N/A0.04(Mutagenicity Negative)
    LCM-TP3568.61N/A0.40(Mutagenicity Negative)
    LCM-TP288619.733949.440.25(Mutagenicity Negative)
    LCM-TP17027.871037.970.07(Mutagenicity Negative)
    LCM-TP12720.30540.60−0.04(Mutagenicity Negative)
    LCM-TP358477.892233.900.01(Mutagenicity Negative)
    LCM-TP326129.21364.75−0.01(Mutagenicity Negative)
    LCM-TP3601380.212113.15−0.02(Mutagenicity Negative)
    LCM-TP328221.902117.800.16(Mutagenicity Negative)
     | Show Table
    DownLoad: CSV

    (1)UV/H2O2体系是污水处理厂中降解LCM的一种有效途径,在该反应体系中,30 min后LCM(10 mg·L−1)的去除率达到98%以上,且降解过程服从准一级反应动力学模型.

    (2)该反应在酸性和中性条件下是有利的,但在强碱性条件下反应明显被抑制,腐殖酸等共存有机物的存在可明显降低反应速率.

    (3)中间产物的鉴定以及毒性预测的结果表明,LCM在降解过程中会产生生物毒性大于母体的中间产物,对水质安全存在潜在威胁.

  • 图 1  气动旋流单元示意图

    Figure 1.  Diagram of aerodynamic swirl unit

    图 2  工程装置流程图

    Figure 2.  Flow chart of engineering device

    图 3  不同阀门开度下石灰石浆液流量

    Figure 3.  Limestone slurry flow under different valve opening

    图 4  浆液pH变化

    Figure 4.  Variation of pH in the slurry

    图 5  脱硫效率随主浆池pH的变化

    Figure 5.  Variation of desulfurization efficiency with pH of the main slurry tank

    图 6  浆液pH差值随主浆池pH的变化

    Figure 6.  Variation of slurry pH increment with pH of the main slurry tank

    图 7  脱硫效率随主浆池pH的变化

    Figure 7.  Variation of desulfurization efficiency with pH of the main slurry tank

    图 8  脱硫效率随主浆池pH的变化

    Figure 8.  Variation of desulfurization efficiency with pH of the main slurry tank

    图 9  浆液pH差值随主浆池pH和阀门开度的变化关系

    Figure 9.  Variation of slurry pH increment with pH of the main slurry tank and valve opening

    图 10  脱硫效率随主浆池pH的变化

    Figure 10.  Variation of desulfurization efficiency with pH of the main slurry tank

    图 11  脱硫效率随pH分区供浆量的变化

    Figure 11.  Variation of desulfurization efficiency with slurry flow of dual-pH

  • [1] 洪文鹏, 陈重. 基于自适应粒子群优化BP神经网络的氨法烟气脱硫效率预测[J]. 动力工程学报, 2013, 33(4): 290-295. doi: 10.3969/j.issn.1674-7607.2013.04.009
    [2] 潘卫国, 郭瑞堂, 冷雪峰, 等. 大型燃煤电站锅炉脱硫塔脱硫效率的数值模拟[J]. 动力工程学报, 2011, 31(4): 306-311.
    [3] 郝润龙, 赵毅, 郭天祥. 燃煤烟气湿法脱硫系统模型及优化运行[J]. 动力工程学报, 2016, 36(10): 822-826. doi: 10.3969/j.issn.1674-7607.2016.10.009
    [4] 刘定平, 余海龙. 基于“液包气”雾化的脱硫喷嘴特性实验[J]. 动力工程学报, 2012, 32(9): 693-697. doi: 10.3969/j.issn.1674-7607.2012.09.007
    [5] 靳会宁. 基于偏最小二乘法的石灰石-石膏湿法脱硫效率预测模型[J]. 资源节约与环保, 2016(3): 15-16. doi: 10.3969/j.issn.1673-2251.2016.03.013
    [6] 牛拥军, 宦宣州, 李兴华. 燃煤电厂烟气脱硫系统运行优化与经济性分析[J]. 热力发电, 2018, 47(12): 22-28.
    [7] 李存杰, 张军, 张涌新, 等. 基于pH分区控制的湿法烟气脱硫增效研究[J]. 环境科学学报, 2015, 35(12): 4081-4087.
    [8] 钟秦, 李爱民. 湿法烟气脱硫中石灰石溶解特性[J]. 南京理工大学学报, 2000, 24(6): 561-569.
    [9] 郭瑞堂, 高翔, 王君, 等. 湿法烟气脱硫石灰石的活性[J]. 燃烧科学与技术, 2007, 13(6): 485-490. doi: 10.3321/j.issn:1006-8740.2007.06.002
    [10] 万金保, 李媛媛. 论双回路吸收塔及其循环浆液计算[J]. 环境工程, 2007, 25(2): 46-48. doi: 10.3969/j.issn.1000-8942.2007.02.014
    [11] 田立江, 张洁, 王丽萍, 等. 双循环多级水幕吸收塔烟气脱硫性能研究[J]. 华中师范大学学报(自然科学版), 2008, 42(3): 415-418.
    [12] 刘景龙. 双pH值湿法烟气脱硫的实验研究[D]. 济南: 山东大学, 2012.
    [13] 郭志, 刘志敏. 基于气液悬浮旋切掺混的气动旋流塔脱硫性能测试与分析[J]. 环境工程学报, 2020, 14(5): 1320-1328. doi: 10.12030/j.cjee.201911008
    [14] 辛志峰, 潘超群, 葛春亮, 等. 基于烟气脱硫吸收塔pH值分区提效技术的试验研究[J]. 能源与环境, 2018(2): 43-46.
    [15] 何思程, 袁惠新, 付双成, 等. 旋流板塔内气相流场的速度及压降的数值模拟[J]. 化工进展, 2019, 30(11): 2399-2403.
    [16] 祝杰, 吴振元, 叶世超, 等. 石灰石-石膏湿法喷淋脱硫模型研究[J]. 高校化学工程学报, 2015, 29(1): 220-225. doi: 10.3969/j.issn.1003-9015.2015.01.34
    [17] 彭启. 石灰石-石膏法脱硫系统工艺参数计算及优化运行[D]. 哈尔滨: 哈尔滨理工大学, 2019.
    [18] QIN M, DONG Y, CUI L, et al. Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers[J]. Chemical Engineering Research and Design, 2019, 148: 280-290. doi: 10.1016/j.cherd.2019.06.011
    [19] 郭东明. 脱硫工程技术与设备[M]. 2版. 北京: 化学工业出版社, 2007.
  • 加载中
图( 11)
计量
  • 文章访问数:  4308
  • HTML全文浏览数:  4308
  • PDF下载数:  59
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-04-16
  • 录用日期:  2020-06-22
  • 刊出日期:  2021-02-10
郭志, 刘志敏. pH分区供浆模式强化气动旋流塔湿法脱硫效率[J]. 环境工程学报, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
引用本文: 郭志, 刘志敏. pH分区供浆模式强化气动旋流塔湿法脱硫效率[J]. 环境工程学报, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
GUO Zhi, LIU Zhimin. Wet desulfurization efficiency based on dual-pH slurry supply coupled aerodynamic swirl tower[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078
Citation: GUO Zhi, LIU Zhimin. Wet desulfurization efficiency based on dual-pH slurry supply coupled aerodynamic swirl tower[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 635-642. doi: 10.12030/j.cjee.202004078

pH分区供浆模式强化气动旋流塔湿法脱硫效率

    通讯作者: 郭志, E-mail: guozhikd@126.com
    作者简介: 郭志(1987—),男,硕士,工程师。研究方向:烟气净化、固废处理。E-mail:guozhikd@126.com
  • 航天环境工程有限公司,天津 300301
基金项目:
天津市科技计划项目(17ZXSTSF00030,18YFYSZC00070,19ZXSZSN00050)

摘要: 为了充分利用气动旋流强化单塔循环脱硫效率的优势,实现燃煤电站烟气SO2超低排放,采用pH分区供浆耦合气动旋流塔技术脱除燃煤烟气中的SO2,并研究了pH分区供浆模式下浆液pH及其差值的变化,分析了pH分区供浆对气动旋流塔脱硫性能的影响。结果表明:空塔喷淋运行工况,pH分区供浆对脱硫效率影响较小;单层循环pH分区供浆耦合气动旋流工况,pH分区供浆的脱硫效率高于主浆池直接供浆,且对脱硫效率的促进作用随主浆池pH增大而减弱。此外,双层循环pH分区供浆耦合气动旋流工况下,pH分区供浆量越大脱硫效率提高越多,且随主浆池pH增大而逐渐减弱。以上研究结果证明,pH分区供浆可提高气动旋流塔的脱硫性能。

English Abstract

  • 燃煤火电机组是大气污染物SO2的排放大户,我国87%的SO2排放来自火电机组的燃煤锅炉烟气排放[1]。石灰石-石膏湿法烟气脱硫技术是我国燃煤电厂应用最广泛的烟气脱硫工艺[2-4],占总量的90%左右[5]。近年来,国家针对燃煤火电机组制定了更为严格的SO2排放标准。因此,如何在已安装的脱硫设备基础上进一步降低SO2排放浓度,提高SO2脱除效率是企业面临的难题。

    石灰石-石膏湿法烟气脱硫包括SO2吸收、石灰石溶解、亚硫酸钙氧化、石膏结晶等过程。国内外众多学者对湿法烟气脱硫的提效改造进行了研究,发现提高浆液pH能够有效促进SO2的吸收[6]。李存杰等[7]研究了基于pH分区控制的新型双循环湿法脱硫系统,获得了较高的污染物脱除效率。钟秦等[8]的研究表明,浆液pH增加更有利于吸收烟气中的SO2气体。郭瑞堂等[9]提出较低的pH浆液更有利于石灰石溶解,而较高的pH浆液会促进SO2的吸收。为了实现双pH运行,国内学者对双循环脱硫工艺也进行了一定的研究。万金保等[10]提出了双循环吸收塔的工作原理,并就循环量的计算方法进行了讨论。田立江等[11]和刘景龙[12]研究了双循环吸收塔中各因素对脱硫过程的影响。郭志等[13]研究了基于气液悬浮旋切掺混的气动旋流塔脱硫性能,研究结果显示气动脱硫单元的脱硫效率高达62.56%,然而关于pH分区供浆耦合气动旋流塔的湿法脱硫效率未见研究。

    以上研究表明,浆液pH分区控制研究集中在双循环湿法脱硫系统中,而针对单循环湿法脱硫系统中的pH分区供浆对脱硫效率的影响研究较少。单循环湿法脱硫系统供浆常采用直接供入塔底部的主浆池,导致以氧化过程为主的主浆池内pH较高而发生结垢堵塞现象[14]。此外,气动旋流塔内的气动旋流单元具有气液悬浮旋切掺混的强化传质效果,可显著提高SO2吸收过程的气膜传质系数[15]。本研究关注气动旋流强化单塔循环湿法脱硫系统中pH分区供浆对脱硫性能的影响,考察了该技术在较低主浆池pH工况下局部增大气动旋流单元内的浆液pH,从而提高气动旋流塔的脱硫效率的可行性,以期为气动旋流塔湿法脱硫技术的性能提升提供参考。

  • 气动旋流单元由下至上主要部件包括导流尾罩、旋流子和悬浮筒。42个气动旋流单元通过上下封板组合为气动旋流单元组件,并将其放置在脱硫塔2层喷淋层之间(见图1),旋流角度为45°。烟气从单元下方进入,在单元内旋流子作用下形成旋转向上的气流,浆液从单元上端落入并被旋转气流托住反复旋切,形成一段动态稳定的气液悬浮层。

    根据双膜理论阻力叠加原理,以气相为基准的总传质系数[16]如式(1)所示。

    式中:Kg为以气相为基准的总传质系数,m·s−1kg为气相传质系数,m·s−1kl为液相传质系数,m·s−1E为增强因子;Hso2为SO2的亨利常数。

    因气相流速高[15]、剪切力强,气动旋流塔中在进行气液悬浮旋切掺混强化脱硫时,液相和气相的聚散组合瞬时、随机发生。加上气液两相的比表面积高,掺混强度大,传质效率高,能显著提高气膜传质系数,从而达到强化SO2气体吸收、捕集的目的。

  • 研究以威海市文登热电厂规模为240 t·h−1的高温高压煤粉锅炉配套烟气脱硫工程为例。该工程采用石灰石-石膏湿法气动旋流塔脱硫工艺,流程图如图2所示。浆液循环泵共计5台,每台循环泵独立对应气动旋流塔内单层喷淋层。喷淋层由下至上依次编号为1#~5#,对应循环泵依次为:1#泵~5#泵,流量均为1 672 m3·h−1。各层喷淋层喷嘴形式采用单向切线空心锥喷嘴,喷嘴数量为30个,单支喷嘴流量为55.7 m3·h−1。气动旋流塔按功能分区由下至上依次为主浆池、空塔喷淋段、气动旋流段、除雾段(见图2)。气动旋流塔吸收区塔径为6.8 m,塔底主浆池直径为9 m,主浆池液位高度为7 m,喷淋层间距为2 m。

  • 石灰石浆液供给系统采用大回流+电动调阀方式,供浆泵流量为27 m3·h−1。3处供浆口分别设置在4#泵吸入管路、5#泵吸入管路和主浆池回流联箱。供浆口的供浆管路上设有隔离阀,通过隔离阀的开闭可以实现3个供浆口独立供浆。供浆调阀开度与石灰石浆液流量的关系如图3所示。

  • 气动旋流塔按以下3种工况运行:空塔喷淋运行工况(1#+2#+4#)、单层循环pH分区供浆耦合气动旋流工况(1#+2#+气动旋流单元+5#)和双层循环pH分区供浆耦合气动旋流工况(3#+4#+气动旋流单元+5#)。3种工况下的浆液喷淋量 (单位为L·h−1)与烟气量(单位为m3·h−1)的比值为15。通过设置供浆调阀开度,测试3种工况下脱硫塔入口SO2浓度;脱硫塔出口SO2浓度。脱硫效率计算方法见式(2)。

    式中:η为脱硫效率;cSO2,in为入口SO2浓度,mg·m−3cSO2,out为出口SO2浓度,mg·m−3

  • 空塔喷淋运行工况下,气动旋流单元中仅有气体通过,气动旋流塔与传统喷淋空塔运行模式相同。供浆调阀开度设定为30%,供浆量为1 m3·h−1。供浆采用模式1(单独开启4#泵吸入管路供浆切断阀)和模式2(单独开启主浆池回流联箱供浆切断阀)向系统供给石灰石浆液。

    模式1工况运行,石灰石浆液直接送入4#泵循环系统,局部增大了4#泵循环浆液pH;模式2工况运行,石灰石浆液直接送入脱硫塔底部储浆池中,整体增大了脱硫塔循环浆液pH。4#泵循环系统浆液通过4#喷淋层进入SO2吸收区,充分吸收烟气中SO2后生成脱硫中间产物Ca(HSO3)2,浆液pH值迅速降低,随后浆液落入主浆池与通入的氧化空气发生反应生成H+,进一步降低了主浆池浆液pH[14]。因此,模式1工况下4#泵循环系统浆液pH高于主浆池浆液pH。此外,主浆池pH降低会促进新加入石灰石浆液中CaCO3的溶解,主浆池pH越低,新加入石灰石浆液CaCO3溶解越多,4#泵循环系统浆液pH提升越大。2种供浆模式运行工况下,4#泵循环系统浆液pH和主浆池浆液pH计算模拟结果如图4所示。结果证明,模式1工况4#泵循环系统浆液pH明显高于主体浆池pH。pH=5.5,2种供浆模式浆液pH差值约为0.3,且2种供浆模式浆液pH差值随主体浆池pH升高而逐渐降低,运行结果与理论分析一致。

    入口烟气SO2浓度2 500 mg·m−3,2种供浆模式下脱硫效率随塔底主浆池pH的变化过程如图5所示。结果证实2种供浆模式运行过程中,脱硫效率随主浆池pH的增大而逐渐增大。当pH由4.7增至5.5过程中,2种运行模式下脱硫效率由97.2%增至98.6%。因此,空塔喷淋运行工况下,增加主浆池的pH能显著提高脱硫效率,此结果与相关学者研究结果相同[14-17]。然而,pH分区供浆仅局部增大了4#循环浆液的pH,pH分区供浆循环量占浆液循环总量的比例较小,对脱硫效率提升作用较小。此外,pH分区供浆区域为4#循环浆液,其所对应喷淋层位于脱硫塔吸收区烟气出口位置,此处SO2吸收过程主要以气膜控制为主,pH分区供浆局部增大4#循环浆液pH仅能提高SO2吸收过程的液膜传质系数,对SO2吸收的综合传质系数影响较小[18]。研究结果与理论分析一致,即在相同主浆池pH工况下,2种运行模式的脱硫效率相差较小。

  • 单层循环pH分区供浆耦合气动旋流工况中,1#喷淋层+2#喷淋层+5#喷淋层投运,供浆调阀开度为25%和30%,供浆量约为0.5 m3·h−1和1 m3·h−1。供浆模式采用模式1(单独开启5#泵吸入管路供浆切断阀)和模式2(单独开启主浆池回流联箱供浆切断阀)向系统供给石灰石浆液。供浆模式1中石灰石浆液直接送入5#泵循环系统,局部增大了5#泵循环系统浆液pH。供浆阀门开度越大,5#泵循环系统浆液pH相比主浆池增加越多。5#泵循环系统浆液pH相比主浆池pH增量的计算结果见图6所示。结果表明:随着主浆池pH增大,5#泵循环系统浆液pH相比主浆池pH增量越小;供浆阀开度为25%工况下,主浆池pH由4.8增至5.5后,pH差值由0.5降低至0.1;且pH分区供浆量越大,5#泵循环系统浆液pH较主浆池增加越多。由此说明,计算结果与理论分析相一致。

    由于单塔双循环工况下,脱硫塔顶部和底部气膜和液膜传质阻力之比为0.65和0.35[18],因此,在脱硫塔出口和高pH区,增大气膜传质系数可显著提高脱硫塔效率。气动旋流段运行工况1中,气动旋流单元组件位于脱硫塔出口区域,其内部产生的强化传质过程可提高SO2吸收过程的气膜传质系数,增大脱硫效率[15]。气动旋流段运行工况1与空塔喷淋运行工况脱硫效率测试结果如图7所示,空塔喷淋运行工况供浆模式1详见3.1中说明。以上结果证明,气动旋流段运行工况1的脱硫效率明显高于空塔喷淋运行工况。该运行结果与理论分析相一致。

    供浆模式1中石灰石浆液直接送入5#泵循环系统,局部增大了5#泵循环系统浆液pH。一方面,浆液经喷淋层进入下部的气动旋流单元内,在气动旋流单元内产生气液悬浮旋切掺混的强化脱硫过程;另一方面pH分区供浆可增大气动旋流单元内浆液pH,在提高SO2吸收过程气膜传质系数的同时,进一步提高了SO2吸收过程的液膜传质系数。因此,pH分区供浆耦合气动旋流强化脱硫过程可提高SO2综合传质系数。

    入口烟气SO2浓度2 500 mg·m−3,脱硫效率随主浆池pH的变化过程如图8所示。结果证实,模式1运行工况脱硫效率高于模式2,且模式1运行工况中pH分区供浆量越大脱硫效率越高。该结果与理论分析相一致。随着主浆池pH增加,pH分区供浆区域浆液的pH较主体浆池pH差值减小,对脱硫效率的促进作用减弱。研究结果还证明,pH分区供浆对脱硫效率的促进作用随主浆池pH增大而减弱。该结果与理论分析相一致。因此,pH分区供浆耦合气动旋流技术可在主浆池较低pH运行工况下得到更高的脱硫效率,故低pH运行工况对促进亚硫酸钙的充分氧化和缓解主浆池内部结垢具有积极作用[19]。此外,低pH运行工况还可促进浆液中CaCO3充分溶解,提高CaCO3的利用率,并进一步提高石膏产品的纯度[19]

  • 双层循环pH分区供浆耦合气动旋流工况中,喷淋层分为3#喷淋层+4#喷淋层+5#喷淋层。供浆调阀开度设定为0~50%,供浆量约为0~3.0 m3·h−1。供浆方式采用同时开启4#泵吸入管路供浆切断阀和5#泵吸入管路供浆切断阀。与气动旋流段运行工况1相比,气动旋流段运行工况2的pH分区供浆部分浆液循环量增大。增大pH分区供浆部分的浆液循环量可以增加浆液中CaCO3与烟气中SO2的接触面积,最终增大pH分区供浆运行模式下的脱硫效率。此外,随着供浆阀开度增大,供浆量相应增大,pH分区供浆部分的浆液pH也将相应随之增大。不同供浆阀开度下,部分浆液pH与主浆池pH的差值随主浆池pH的变化曲线计算结果如图9所示。结果证明,pH差值随主浆池pH的增大而逐渐降低,并且供浆阀门开度越大,pH差值越大。计算结果与理论分析相一致。计算结果证明,pH=5.5,供浆阀开度由0增至50%,浆液pH差值由0增至0.55。此外,结果证实pH分区供浆量对pH差值的促进作用随主浆池pH的增大而减小。这是由于随着主浆池pH增大,新加入CaCO3浆液溶解变慢,浆液pH的提升减弱。

    入口烟气SO2浓度2 500 mg·m−3,不同pH分区供浆量下的脱硫效率随主浆池pH的变化过程如图10所示。结果证明,脱硫效率随主浆池pH的增大逐渐增大,且pH分区供浆量越大脱硫效率越高,但pH分区供浆对脱硫效率的提升作用随主浆池pH增加而逐渐减弱。该结果与理论分析及浆液pH计算结果相吻合。主浆池pH=5.55,脱硫效率随pH分区供浆量的变化如图11所示。结果表明,供浆调阀开度由0增至50%,脱硫效率由98.50%增至99.35%,脱硫效率提升了0.86%。因此,基于pH分区供浆耦合气动旋流强化单循环湿法烟气脱硫系统,相比传统供浆方式具有更高的脱硫效率,相比基于pH分区控制的双循环湿法烟气脱硫系统改造工作量更小,可为现有脱硫系统提效改造提供一条有利途径。

  • 1) 空塔喷淋运行工况下,增加主浆池pH可显著提高脱硫效率。pH分区供浆可局部提高4#泵循环浆液pH,但pH差值随主体浆池pH升高而逐渐降低。该工况下,pH分区供浆对脱硫效率影响较小。

    2) 单层循环pH分区供浆耦合气动旋流工况下,pH分区供浆模式下的脱硫效率高于主浆池直接供浆,且pH分区供浆对脱硫效率的促进作用随主浆池pH增大而减弱。

    3) 双层循环pH分区供浆耦合气动旋流工况,主浆池pH相同的工况下,pH分区供浆量越大脱硫效率越高,且随主浆池pH增加而逐渐减弱。当主浆池pH为5.55时,pH分区供浆下脱硫效率由98.50%增至99.35%,效率提升了0.86%。上述研究结果证明pH分区供浆可提高气动旋流塔的脱硫性能,可为气动旋流塔的性能提升和脱硫装置超低排放改造提供参考。

参考文献 (19)

返回顶部

目录

/

返回文章
返回