

Environmental Engineering

第 15卷 第 2期 2021年 2月 Vol. 15, No.2 Feb. 2021

(www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

🦟 (010) 62941074

梁梁 文章栏目:大气污染防治

DOI 10.12030/j.cjee.202005066

中图分类号 X701 文献标识码

刘颖帅, 胡广地, 齐宝华. 固态 SCR 技术降低柴油机尾气 NO_x 的排放[J]. 环境工程学报, 2021, 15(2): 626-634. LIU Yingshuai, HU Guangdi, QI Baohua. Reduction of NO_x emissions from diesel engines by solid SCR technology[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 626-634.

固态 SCR 技术降低柴油机尾气 NO_x 的排放

刘颖帅^{1,2,3}, 胡广地^{1,*}, 齐宝华²

1.西南交通大学机械工程学院,成都 610031
 2.宁波保税区博士后科研工作站,宁波 315899
 3.潍坊科技学院智能制造学院,潍坊 261000

第一作者:刘颖帅(1983—),男,博士,讲师。研究方向:重型柴油机排放控制技术。E-mail: liuyingshuai1983@163.com *通信作者: 胡广地(1964—),男,博士,教授。研究方向:发动机及排放控制技术。E-mail: ghu@home.swjtu.edu.cn

摘 要 为解决尿素 SCR 技术在低排气温度时 NO_x转化效率低、整车实际运行过程中易产生尿素结晶的问题, 在发动机台架和实际道路开展了实验,研究固态 SCR 对 NO_x污染物的排放影响。结果表明:携带相同质量还原 剂时,固态 SCR 系统的体积仅为尿素 SCR 系统的 1/3;当排气温度为 160 ℃ 时,固态 SCR 系统对 NO_x转化效率 可达到 40%;相同氨氮比下,WHSC 循环对 NO_x转化效率提升了 3.3%,WHTC 循环对 NO_x转化效率提升了 4.5%;将固态 SCR 起喷温度降低到 160 ℃ 后,NO_x转化效率提升明显,较 200 ℃ 起喷温度的固态 SCR 系统、尿 素 SCR 系统分别提升 9.7%和 15.5%。基于功基窗口法对固态 SCR 与尿素 SCR 的 NO_x比排放进行了分析,功基 窗口数在 (0,20]时,匹配尿素 SCR 系统的柴油车 NO_x污染物排放量,分别是 160 ℃ 起喷温度和 200 ℃ 起喷温 度固态 SCR 系统的 2.38和 1.73 倍。

关键词 选择性催化还原;柴油机尾气排放;氨泄露;转化效率;金属氨盐

重型柴油车的尾气排放对大气中 PM₂₅和 NO_x等污染物的贡献很大。据估算,重型柴油车的 PM 排放量能占机动车排放总量的 78%,其中 NO_x 排放量占机动车排放总量的 57.3%^[1-2]。根据《车 用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法 (中国 VI 阶段)》(GB 17691-2018),我国将分别在 2021 年 7 月 1 日和 2023 年 7 月 1 日实施重型柴油车国 VI-a 阶段和 VI-b 阶段排放标准。为满足柴油机的国 VI 排放要求,后处理装置通常采用柴油机催化氧化 (diesel oxidation catalyst, DOC)-颗粒物捕集器 (diesel particulate filter, DPF)-选择性催化氧化 (selective catalytic reduction, SCR) 联用的模式。其中,DPF 用于减少颗粒物排放、SCR 用于减少 NO_x 的排放。目 前,我国符合国 VI 排放标准的发动机及后处理核心技术与国外相比仍存在较大差距^[3-4]。

实际应用较多的低温 SCR 系统对 NO_x 的转化效率不高。城市邮政车、公交车、环卫车运行时 经常启停,在排气温度较低时尿素 SCR 系统无法正常运行^[5-8]。为达到国 IV、国 V 排放标准, SCR 系统的平均转化效率需达到 75%~85%。而由于 SCR 控制策略往往采用基于目标转化效率的开 环控制策略^[9-10],故到了国 VI 阶段, SCR 系统平均转化效率应提升至 90%~98%。为达到更高的转

收稿日期: 2020-05-13; 录用日期: 2020-10-10

基金项目: 国家自然科学基金资助项目 (51508304, 51676017)

化效率,需要按比例过量喷射尿素,但尿素结晶的风险会随之增大。另外,国 VI 标准下调了 NH₃ 泄漏限值,还需在 SCR 下游安装氨捕集器 (ammonia slip catalyst, ASC)。而在排气温度高于 380 ℃ 时,还应考虑喷入排气气流中的尿素水溶液可能快速脱水转变成三聚氰胺沉积物的问题。这种现 象会导致排气管路堵塞、发动机背压增加,由此带来功率下降、油耗上升的事件时常发生¹¹¹。因 此,降低或避免尿素结晶是亟需解决的难题^[12-13]。

固态 SCR 技术是近年来出现的一种降低 NO_x 排放的新技术。LACIN 等^[14]的研究结果表明,固态 SCR 在 FTP72 和 US06 测试循环有较高的 NO_x 转化效率; FULKS 等^[15] 对不同种类的固态氨存储 材料的氨气释放特性进行了研究,发现固态 SCR 技术携带氨的体积密度和纯液体氨相当,在相同 的容积下,可比尿素 SCR 系统携带更多的有效还原剂; SHOST 等^[16] 的研究结果表明,固态 SCR 可将氨气直接喷射到排气管中,有较大的 NO_x 减排潜力^[16-17]。因此,固态 SCR 能够避免尿素 SCR 系统低温活性不足、排气管路结晶、低温结冰等缺陷,是一种有前景的柴油机 NO_x 排放控制技 术^[18-21]。

本研究为探讨固态 SCR 技术对柴油机尾气的 NO_x 减排特性,分别在发动机台架及车载道路上 开展实验,并与尿素 SCR 技术进行了对比分析,以期为降低我国城市柴油车 NO_x 污染物排放、轻 型柴油车国 VI 排放标准达标提供参考。

1 仪器与方法

1.1 技术原理

固态 SCR 系统分金属氨盐存储罐、内部加热器、减压阀、不锈钢罐,以及后处理控制单元 (aftertreatment control unit, ACU)、喷射控制阀、喷射装置、压力调节阀和氨气输送管等组成,其结构^[22-23]如图 1 所示。固体 SCR 技术原理分 3 步: 1)将金属氨盐 (Sr(NH₃)₈Cl₂)存于封闭不锈钢罐体 内,当其受热至一定温度后,NH₃以氨气形式释放出来。NH₃的喷射压力通过压力调节阀闭环调 节,稳定在 400 kPa; 2)ACU 接收发动机控制器 (electronic control unit, ECU)的氨氮比通信信号 (controller area network, CAN)后,实时喷射 NH₃ 到发动机排气管根据柴油机不同工况实时调整 NH₃喷射量; 3)NH₃在 SCR 催化剂的作用下与 NO_x发生化学反应,从而减少柴油机尾气中 NO_x的

Fig. 1 Schematic diagram of solid SCR system

排放。为使 NH₃ 剂量阀保持精确计量,对系统监测密闭容器压力值及温控单元进行闭环控制。固态 SCR 技术同尿素 SCR 技术相比,不受尿素热解水解温度的限制,不存在尿素结晶、尿素结石堵塞排气管路的风险。而金属氨盐 (Sr(NH₃)₈Cl₂) 做为 NH₃ 的存储介质^[24],具有氨存储效率高、低温活性高等优点。另外,催化剂氨存储量对 NO_x转化效率有明显的影响,所以选择催化剂氨存储性能好、低温活性好的催化剂,可以有效提升 SCR 系统在低温下的 NO_x转化效率。

1.2 台架实验系统

柴油发动机台架实验系统包括测功机、排放测试分析仪、固态 SCR 系统、尿素 SCR 系统和 SCR 催化剂系统 (见图 2)。催化剂采用低温转化效率高的铜基催化剂或钒基催化剂。柴油发动机及 后处理的主要技术参数为:四冲程;增压中冷机型;电控高压共轨的燃油供给;缸径行程 80 mm× 130 mm,额定功率 220 kW;最大转矩 1 250 N·m;最大扭矩转速范围为 1 200~1 700 r·min⁻¹;涡轮增 压器限制温度≤600 ℃;SCR 催化转换器体积 17 L。测试设备的主要型号及参数分别为:电力测功 机 (湖南湘仪实验室仪器开发有限公司,ZAC450),测量精度为±3%;油耗分析仪 (AVL List GMBH, AVL735),测量精度为±1%;气体采集分析仪 (HORIBA, MEXA7500),测量精度为±1%; 氨气分析仪 (Environment S.A, FT-UV),其测量精度为±3%;进气流量计 (ABB Ltd., Sensyflow P),测量精度为±3%。

发动机台架实验系统通过同一控制器提供固态 SCR 系统和尿素 SCR 系统相同氨氮比的控制信号,测功机用来控制发动机转速和扭矩。实验基于国 VI 排放标准中的世界统一稳态循环 (world harmonized steady cycle, WHSC) 和世界统一瞬态循环 (world harmonized transient cycle, WHTC) 进行,分别采用固态 SCR 和尿素 SCR 喷射系统对同一台柴油发动机进行实验。气体采样装置对后处理系统排气尾管直接采样,尾气分析仪测量排放的 NO_x 污染物,氨气分析仪测量氨气泄露量。

1.3 道路实验方案

在一台增压中冷柴油机中进行固态 SCR 与尿素 SCR 系统降低 NO_x 的对比研究: 1) 研究固态 SCR 的氨盐存储释放特性; 2) 基于相同的氨氮比,确保 2 种系统喷射的还原剂总量相同,固态 SCR 采用被动喷射氨气模式、尿素 SCR 为直接向排气尾管喷射氨气模式,进行 WHSC 和 WHTC 循 环实验验证。实验条件中,柴油发动机、进气系统、排气系统、冷却系统和排气后处理系统等装

备,以及润滑油、燃料油等材料均符合《车用压燃式、气体燃料点燃式发动机与汽车排气污染物 排放限值及测量方法(中国III、IV、V阶段)》(GB17691-2005)。根据实验要求,发动机实验台实时 记录发动机的工作参数,如发动机转速、扭矩、温度、催化剂的空速、氨氮比等参数。每个发动 机的运行模式稳定180 s,在最后 30 s 记录数据,采用排气组分分析仪和 NH₃分析仪记录对应的排 放数据。由于 1 mol 尿素可水解成 2 mol 的氨气,尿素标准水溶液的质量浓度为 32.5%,所以,固 态 SCR 氨气需求量与尿素需求量的换算关系见式(1)。SCR 催化转换器的表面温度由催化转换器进 出口温度的算术平均值替代。SCR 催化转换器的转化效率如式(2)所示。误差分析采用标准偏差公 式(式(3))。

$$Q_{\rm u} = \frac{M_{\rm u}}{2CM_{\rm n}} \cdot Q_{\rm n} = 5.42Q_{\rm n} \tag{1}$$

式中: Q_u 为尿素需求量, mg·s⁻¹; Q_n 为氨气需求量, mg·s⁻¹; M_u 为尿素的摩尔质量, g·mol⁻¹; M_n 为 氨气的摩尔质量, g·mol⁻¹; C为标准尿素水溶液质量浓度, 取值 32.5%。氨气和尿素的摩尔质量分 别为 17 g·mol⁻¹ 和 60 g·mol⁻¹。

$$\eta_{\rm N} = \frac{C_{\rm Nin} - C_{\rm Nout}}{C_{\rm Nin}} \times 100\% \tag{2}$$

式中: η_N 为催化转换器的 NO_x转化效率; C_{Nin} 为催化转换器入口处 NO_x浓度; C_{Nout} 为催化转换器出口处 NO_x浓度。

$$\sigma = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} (x_i - \mu)^2$$
(3)

式中: σ为标准偏差; N为样本总量; i为样本序列号; X_i为第i个样本的值; μ为算术平均值。

2 结果与讨论

2.1 固态 SCR 与尿素 SCR 技术的单位储氨性 能对比

SCR系统降低柴油机 NO, 排放的主反应 为: 4NO+4NH₃+O₂=4N₂+6H₂O。实验所需各种 还原剂对应的储氨特性如表1所示,由此计算 出还原单位质量NO所需的纯液氨、固态 SCR、尿素 SCR 及固态储氨物质 Sr(NH₃)₈Cl, 的 体积之比为 0.93:0.75:2.83:0.95。以纯液氨体积 为基准体积,设定为100,各还原剂体积按此 标准换算出的体积数如图 3 所示。由图 3 可 知,还原单位质量 NO 所需还原剂中,固态 SCR体积数最小,尿素 SCR体积数最大, Sr(NH₃)_sCl, 与纯液氨相当, Sr(NH₃)_sCl, 的体积 数是尿素 SCR 的 1/3 左右。因此,在相同存储 体积下,应用固态 SCR系统能够比尿素 SCR 系统携带更多有效还原剂,即携带相同质 量还原剂的固体 SCR 系统续航里程要高于尿 素 SCR 系统。这也说明应用固态 SCR 系统能 大幅减小系统体积,更有利于整车布置。

表1 不同还原剂的储氨密度

	Table 1	Ammonia storage	density of	different reduct	ant
--	---------	-----------------	------------	------------------	-----

还原剂	摩尔质量/(g·mol ⁻¹)	密度/(g·cm ⁻³)	质量/g	体积/cm ³
纯液氨	17	0.61	0.57	0.93
固态SCR	60	1.33	1.0	0.75
尿素SCR	—	1.09	3.08	2.83
$Sr(NH_3)_8Cl_2$	294.5	1.30	1.23	0.95

图 3 还原单位 NO 所需不同还原剂标准体积数

Fig. 3 Standard volume of different reductants needed for reducing one unit of NO

固态 SCR 系统中氨气随温度变化的释放情况见图 4。当固态 SCR 不锈钢罐被加热到阈值温度,金属氨盐方可释放出氨气,相关反应的化学方程式见式(4)和式(5)。

$$Sr(NH_3)_8Cl_2 \stackrel{20}{\leftrightarrow} Sr(NH_3)Cl_2 + 7NH_3$$

 $Sr(NH_3)Cl_2 \stackrel{70 \circ C}{\leftrightarrow} SrCl_2 + NH_3$

由图4可知,当不锈钢罐体被加热到20℃时,氨气开始释放。安装在罐体上的压力传感器探

测到压力信号为 20 kPa。持续升温至 70 ℃,不 锈钢罐体的压力可通过稳定阀调节,并在 400 kPa 时满足喷射条件。通过控制电加热的 PWM 占 空比信号,使不锈钢罐体温度稳定在 60~70 ℃。 这样最有利于喷射压力稳定在 400 kPa。当系 统预热 300 s 后,即可满足 400 kPa 喷射要求。

在空速为 30 000 h⁻¹、不同排气温度条件 下,通过后处理电控单元(ACU)设定氨氮比为 1:1, 固态 SCR 和尿素 SCR 的 NO_x转化效率对 比如图 5 所示。结果表明,当排气温度低于 250 ℃时, 固态 SCR转化效率明显高于尿素 SCR。其中,在160 ℃时,固态 SCR 的 NO,转 化效率较尿素 SCR 提升了 40%; 在 180 ℃ 时, 转化效率提升了40%;在200℃时,转化效率 提升了 35%; 在 220 ℃时,转化效率提升了 25%。而在低温时,尿素 SCR 的 NO.转化率主 要受尿素热解、水解温度的限制, 故低温时的 转化效率较低。在 300~400 ℃ 时,固态 SCR 系 统的 NO_x转化效率与尿素 SCR 相当,最高转 化效率接近95%。这是由于在该温度区间催化 剂活性最好, NO_x转化效率最高。当排气温度 低于 200 ℃,固态 SCR 氨气泄漏量明显高于尿 素 SCR。这是由于该温度下,喷入排气管中的 尿素水溶液不能完全水解成氨气,而在排气温 度高于200℃时,尿素水解效率较高,故氨泄 漏与固态 SCR 技术的量相当。

不带后处理的柴油机 WHSC 裸机 NO_x 排 放量为 9.25 g·(kWh)⁻¹。在 WHSC 循环内设置相 同氨氮比,分别进行固态 SCR 和尿素 SCR 对 比实验,结果如图 6 所示。结果表明:固态 SCR 和尿素 SCR 系统的 NO_x 排放量分别减少 至 1.65 g·(kWh)⁻¹和 1.95 g·(kWh)⁻¹;平均 NO_x转 化效率分别为 82.2%和 78.9%,固态 SCR 的转 化效率较尿素 SCR 提升了 3.3%;平均 NH₃ 泄

图 4 氨气释放特性图

图 5 SCR 转化效率与氨泄漏

图 6 WHSC 循环 NO_x 转化效率

(4)

(5)

漏是 1.2×10⁻⁶ 和 1.7×10⁻⁶, 2 种技术差异较小; 氨逃逸峰分别为 6×10⁻⁶ 和 8×10⁻⁶。

不带后处理的柴油机 WHTC 裸机 NO_x 排放量为 8.99 g·(kWh)⁻¹。在 WHTC 循环内设置相同的氨氮比,分别进行固态 SCR 和尿素 SCR 对比实验,结果如图 7 所示。结果表明:固态 SCR 和尿素 SCR 系统的 NO_x 排放量分别减少到 1.5 g·(kWh)⁻¹ 和 1.9 g·(kWh)⁻¹,平均 NO_x转化效率分别为 83.3% 和 78.8%;固态 SCR 系统的 NO_x转化效率较尿素 SCR 提升了 4.5%;氨气泄漏峰值分别出现在 78×10⁻⁶ 和 55×10⁻⁶,平均氨泄漏分别为 4.3×10⁻⁶ 和 3.0×10⁻⁶。分析其原因,WHTC 循环由 1 400~1 600 s 切换到高速路段时,柴油机负荷突然增加,排气流量迅速变大;此时的 SCR 箱内氨存储量较大,温度迅速上升,氨存储量下降,从而导致氨气溢出;而铜基 SCR 催化剂氨存储能力较强,也容易在 SCR 催化器温度突然升高时产生氨泄漏。

2.3 固态 SCR 系统氨存储特性

图 8 为 SCR 催化器在排温 200 ℃、空速 25 000 h⁻¹下,各工况点的动态反应特性,表现了不同 点的氨存储性能。在进行氨存储最大值实验时,需将 ASC 拆下。实验过程中,记录 SCR 催化器上 下游温度、上下游 NO_x浓度、下游 NH₃浓度、尿素喷射量、发动机进气量、喷油量等相关参数。 发动机在额定点运行 10~15 min 后,停止喷射尿素以清空 SCR 催化器内的氨存储。手动调整发动机 工况,使 SCR 平均温度在 200 ℃、空速 25 000 h⁻¹ 工况点。待 SCR 前后温度和上下游 NO_x浓度稳定 后,开始记录数据。将氨氮比调节为 1.3 后开始喷射尿素,下游 NO_x浓度快速下降,氨存储量逐渐 上升,NH₃泄漏在 400 s 开始缓慢上升,NH₃泄漏上升到 70×10⁻⁶时,停止喷射尿素。下游 NO_x浓度 快速上升到柴油机原机排放浓度时,停止记录数据。选取从尿素喷射开始,到 NH₃泄漏达到

25×10⁻⁶这一段时间的数据。根据 SCR 催化器 动态化学平衡,NH_{3in}是进入催化器的 NH₃质 量流量,NO_{xin}进入催化器的 NO_x质量流量, NH_{3out}是溢出催化器的 NH₃质量流量,NO_{xout} 排出催化器的 NO_x质量流量,积分后累计的差 值即为该工况点的最大氨存储量。因满足国 VI 排放的 NO_x平均效率应达到 95% 以上,故 一般选用低温转化效率较好的铜基催化剂。 SCR 催化器的氨存储随催化器温度的上升而降 低。在相同温度点,随氨存储量的增加,NO_x 转化效率得以提升。

Fig. 8 Ammonia storage characteristics of SCR

2.4 固态 SCR 与尿素 SCR 车载道路实验结果的对比分析

图 9 为固态 SCR 与尿素 SCR 随车速变化 的 NO_x转化效率对比。由图 9 可知,随着车速 的增加,发动机工作负荷逐渐上升,排气温度 逐渐提高,相应的 NO_x转化效率也同步增加。 由于固态 SCR 技术是直接向排气尾管喷射氨 气,故没有尿素结晶风险。将固态 SCR 起喷温 度调整到 160 ℃ 进行喷射,车速控制在 0~40 km·h⁻¹, NO_x的转化效率明显提升,较 200 ℃ 起喷的固态 SCR 系统和尿素 SCR 系统分别提 升了 9.7% 和 15.5%。在车速大于 40 km·h⁻¹时, 维持相同氨氮比,其转化效率变化不大。因

此,对于长期在低速运行的市内柴油车辆,采用固态 SCR 技术并降低起喷温度,可有效提升 NO_x的转化效率。

功基窗口法是将实验结果划分为若干个适用于评估 PEMS 性能的窗口数据子集。功基窗口大小为发动机 WHTC 循环功,并计算功基窗口内所有采样点的平均比排放值。功基窗口移动间隔为 1 s。主要包括功基窗口法和 CO₂ 基窗口法。第*i* 个平均窗口的周期 *t_{2i}-t_{1i}* 由式 (6) 决定。

$$W(t_{2,i}) - W(t_{1,i}) \ge W_{\text{ref}}$$
(6)

式中: $W(t_{j,i})$ 为从开始到时间 $t_{j,i}$ 内的发动机循环功, kWh; W_{ref} 为 WHTC 的循环功, kWh; $t_{2,i}$ 见式(7)。

$$W(t_{2,i} - \Delta t) - W(t_{1,i}) < W_{\text{ref}} \le W(t_{2,i}) - W(t_{1,i})$$
(7)

Δt 为数据采样周期, ≤1 s。每一个窗口和每一种污染物比排放的计算见式(8)。

$$_{\text{gas}} = \frac{1}{W(t_{2,i}) - W(t_{1,i})}$$
(8)

式中: m为各污染物的排放质量, mg; W(t_{2,i})-W(t_{1,i})为第i个平均窗口的发动机循环功,同时,有效窗口平均功率大于发动机最大功率的20%,有效窗口比例至少50%。

基于功基窗口法对固态 SCR 与尿素 SCR 的 NO, 排放效率进行了分析 (见图 10)。由图 10 可

m

知, 功基窗口数在 (0, 20]之间, 匹配尿素 SCR 系统的柴油车 NO_x污染物排放量明显较高, 分别为 160 ℃ 起喷温度和 200 ℃ 起喷温度 下的固态 SCR 系统的 2.38 和 1.73 倍。这是由 于尿素喷入排气尾管后需要先进行水解热解, 才能生成还原剂氨气;若汽车启动时间较短, 排气温度尚未达到适宜条件时还原剂的生成率 较低, 会导致 NO_x 排放量较大。因此, 对于频 繁起停的车辆, 起步阶段尿素 SCR 排放的污染 物 NO_x较多。

3 结论

1) 固态 SCR 系统比尿素 SCR 系统携带更

多有效还原剂,携带同等质量还原剂,体积仅为标准尿素水溶液体积的1/3。SCR系统体积的节省可有助于整车的安装布置,实现轻量化,降低碳排放。

2) 为满足国 VI 排放标准, SCR 系统对 NO_x的平均去除率应达到 95% 以上, 故一般选用低温转 化效率较好的铜基 SCR 催化剂。台架实验表明, 随反应温度的上升, SCR 催化器的氨存储能力降 低, 故应维持适宜温度点, 保证氨存储量的增加, 从而提升 NO_x 的转化效率。

3) 实际道路实验表明,固态 SCR 直接向排气管喷射氨气,具有更低的起燃温度,可提高低温下的 NO_x转化效率,所以,对于长期在低速运行的市内柴油车辆,应采用固态 SCR 技术并降低起喷温度,以有效减少 NO_x 的排放。

参考文献

- LIU Y S, GE Y S, TAN J W, et al. Emission characteristic of off-shore fishing ships of Yellow Bo Sea, China[J]. Journal Environmental Sciences, 2018, 65: 83-89.
- [2] 刘颖帅, 葛蕴珊, 谭建伟. 基于国 VI标准的重型柴油车气态污染物排放控制技术[J]. 环境工程学报, 2019, 13(7): 1703-1710.
- [3] ZVONIMIR P, TIBOR B, MILAN V, et al. Pollutant emissions in diesel engines influence of biofuel on pollutant formation[J]. Journal of Environmental Management, 2017, 203(3): 1038-1046.
- [4] BASKAR P, KUMAR A. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air[J]. Alexandria Engineering Journal, 2017, 56(1): 137-146.
- [5] 张岩. 重型柴油机SCR催化器的CFD仿真分析[D]. 长春: 吉林大学, 2012.
- [6] 胡振奇. 重型柴油机SCR系统尿素喷射控制策略研究[D]. 长春: 吉林大学, 2012.
- [7] SHEN B X, LI Z J, LI J, et al. Development of a 1D urea-SCR system model coupling with wall film decomposition mechanism based on engine bench test data[J]. Energy Procedia, 2017, 142: 3492-3497.
- [8] QIU T, LI X C, LIANG H, et al. A method for estimating the temperature downstream of the SCR catalyst in diesel engines[J]. Energy, 2014, 68: 311-317.
- [9] FU M L, GE Y S, WANG X, et al. NO_x emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns[J]. Science of the Total Environment, 2013, 452-453: 222-226.
- [10] BENDRICH M, SCHEUER A, HAYES R E, et al. Unified mechanistic model for standard SCR, fast SCR, and NO₂ SCR over a copper chabazite catalyst[J]. Applied Catalysis B: Environmental, 2018, 222: 76-87.
- [11] ZHENG G Y, ADAM F, ADAM K, et al. Investigation of urea deposits in urea SCR systems for medium and heavy duty trucks[R]. SAE Paper, 2010: 6-20.
- [12] AMIR R F, ISABEILLA N, ENRICO T. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment[J]. Catalysis Today, 2017, 297: 10-16.
- [13] 张纪元, 李国祥, 孙少军, 等. 车用柴油机Urea-SCR催化器优化设计及实验研究[J]. 内燃机工程, 2013, 34(1): 57-61.
- [14] LACIN F, KOTRBA A, HAYWORTH G, et al. Demonstrating an improved approach to NO_x reduction via a solid reductant[R]. SAE Paper, 2011: 7-22.
- [15] FULKS G, GALEN B F, KEN R, et al. A Review of solid materials as alternative ammonia sources lean NO_x reduction with SCR[R]. SAE Paper, 2009: 90-97.
- [16] SHOST M, NOETZEL J, WU M C, et al. Monitoring, feedback and control of urea SCR dosing systems for NO_x reduction[R]. SAE Paper 2008: 13-25.

- [17] 刘明, 何超, 李加强, 等. 柴油车固体SCR系统运行及NO, 排放特性研究[J]. 车用发动机, 2019(1): 53-57.
- [18] 袁文莉, 孙涛. 重型柴油机固体尿素SCR控制系统设计[J]. 农业装备与车辆工程, 2018, 56(4): 54-58.
- [19] LIU Y S, TAN J W. Green traffic-oriented heavy-duty vehicle emission characteristics of China VI based on portable emission measurement systems[J]. IEEE Access, 2020, 222: 1-9.
- [20] COLOMBO M, NOVA I, TRONCONI E. A comparative study of the NH₃-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst[J]. Catalysis Today, 2010, 151(3/4): 223-230.
- [21] COLOMBO M, NOVA I, TRONCONI E. Detailed kinetic modeling of the NH₃-NO/NO₂ SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment[J]. Catalysis Today, 2012, 197(1): 243-255.
- [22] KIRSTEN L, LOUISE O. Deactivation of Cu/SAPO₄⁻³ during low-temperature NH₃-SCR[J]. Applied Catalysis B: Environmental, 2015, 165: 192-199.
- [23] CHUN M W, YOON C S, KIM H. Basic study on the chemical method for the prevention of recombination in gas produced from decomposition of ammonium carbamate to the solid SCR in a diesel engine[J]. Transactions of the Korean Society of Mechanical Engineers, 2017, 41: 785-793.
- [24] LEE H, YOON C S, KIM H. A study on reaction rate of solid SCR for NO_x reduction of exhaust emissions in diesel engine[R]. SAE Paper, 2013: 21-26.
- (本文编辑: 靳炜, 郑晓梅)

Reduction of NO_x emissions from diesel engines by solid SCR technology

LIU Yingshuai^{1,2,3}, HU Guangdi^{1,*}, QI Baohua²

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Ningbo Free Trade Zone Workstation, Ningbo 315899, China

3. Institute of Intelligent Manufacturing, Weifang University of Science & Technology, Weifang 261000, China *Corresponding author, E-mail: ghu@home.swjtu.edu.cn

Abstract The urea-SCR technology is prone to low NO_x conversion efficiency and urea crystallization in the low exhaust temperature actual operation process of the vehicle. To address this, engine test bench studies are conducted to investigate the effectiveness of solid SCR technology on NO_x emission reduction. Results show that the volume of the solid SCR system is only 1/3 of the urea-SCR when carrying the same amount of reductant. The NO_x conversion efficiency of the solid SCR system reaches 40% when the exhaust temperature is 160 °C. Based on the same ammonia nitrogen ratio setting, the NO_x conversion efficiency improves by 3.3% and 4.5% by applying the WHSC and WHTC cycles respectively. The NO_x conversion efficiency improves significantly when the starting temperature of the solid SCR is reduced to 160 °C, which is 9.7% and 15.5% higher than that of the solid SCR system and urea-SCR systems at 200 °C, respectively. The emission of NO_x pollutants from diesel vehicles with the urea-SCR system is significantly higher, which is 2.38 and 1.73 times that of solid SCR system with injection temperature at 160 °C and 200 °C according to the work based windows analysis ((0, 20]).

Keywords selective catalytic reduction; exhaust emission of diesel engine; leakage of ammonia; conversion efficiency; metal ammine chloride salts