-
随着社会经济和城市化的发展,我国生活污水的排放量日益增多,作为污水处理副产物的污泥,其年产量也随之增多。根据住建部统计,截至2018年底,全国设市城市、县累计建成污水处理厂3919座,污水处理能力达到2.0×108 m3·d−1。其中,城市污水处理率达到95.5%,产生的污泥(含水率80%)超过约6.5×107 t。城市污泥不仅含有大量有机物,还含有丰富的氮、磷、钾、氨基酸及多种微量元素,具有巨大的利用潜力。但是,污水中汇集了大部分生产生活释放的重金属,且在处理过程中不能被降解。大约50%~80%以上的重金属会由细菌吸收、表面吸附或共沉淀作用转移到污泥[1],污泥胞外聚合物的羧酸盐、磷酸盐、胺盐、硫醇类等物质为重金属吸附结合提供了大量的结合位点[2]。有研究[3-5]表明,污泥重金属的危害不仅与其含量有关,还与其存在形态密切相关。随着环境的改变(如pH、温度等),重金属的形态会发生变化。当有害形态浓度超过一定值后,即会产生毒害作用。
2014—2017年,随着北京城区污泥处理系统的升级,高级厌氧消化工艺系统被应用到污泥处理过程中。该工艺在传统厌氧消化系统的基础上,增加了热水解处理单元。热水解预处理使得原污泥中的絮体解体,微生物细胞破碎,细胞内的水分释放出来,大分子的有机物质溶解,粘性降低,脱水性变好[6]。相较于传统污泥厌氧消化处理工艺,高级厌氧消化工艺的消化罐的处理能力增加了2~3倍,沼气量提高了30%~100%,消化污泥经脱水后体量减少60%以上,还能够有效去除臭气和病原菌。目前,高级厌氧消化产物林地和园林绿化利用的试点正在北京开展,为了支撑重金属环境风险的评估并保障土地利用的有效开展,本研究选取北京市4座再生水厂的污泥为研究对象,通过解析污泥所含重金属在高级厌氧消化系统的含量及分布形态,掌握高级厌氧消化过程重金属的迁移转化特征,并评估消化污泥中重金属的生态风险,以期为污泥处理与及产物土地利用的方案制定提供参考。
城市污泥重金属在高级厌氧消化工艺系统中的迁移转化及风险评价
Migration and transformation of heavy metals in sewage sludge during advanced anaerobic digestion process and risk assessment
-
摘要: 采用改进的BCR连续提取法,研究了4座再生水厂高级厌氧消化系统中热水解和厌氧消化对污泥所含重金属(As、Cd、Cr、Cu、Hg、Ni、Pb、Zn)赋存形态的影响,并利用风险评价指数法(RAC)和潜在生态风险指数法(PERI)评估了消化产物进行土地利用时的重金属迁移风险和潜在生态风险。结果显示,4座再生水厂热水解污泥中的Cr、Cu、Pb、Ni、Cd、Zn的不稳定态向稳定态转化了0.9%~24.9%;消化污泥中Cr、Cu、Pb、Ni、Cd、Zn重金属的残渣态增加了1.0%~19.2%。RAC评价结果表明,消化污泥中重金属Cu、Hg、Pb、Cr、Cd、Zn的迁移风险指数均小于5%,处于无迁移风险或低迁移风险水平。以北京市土壤背景值和北京市大兴区土壤实测值作为参比值进行PERI评价,结果表明,消化产物中生物可利用态与潜在可利用态重金属均处于较低风险水平。高级厌氧消化有利于污泥中其它形态重金属逐渐向残渣态转化,从而降低其迁移性与生态风险。Abstract: The study was carried out to investigate the effects of thermal hydrolysis and anaerobic digestion on the form distribution of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the sludge of four reclaimed wastewater treatment plants with the modified BCR continuous extraction method. Meanwhile, the migration risk and potential ecological risk of heavy metals in the digested products for land use were evaluated by the risk assessment code (RAC) and potential ecological risk index (PERI) methods. The results showed that 0.9%~24.9% of the unstable states of Cr, Cu, Pb, Ni, Cd and Zn in the thermal-hydrolyzed sludge of four reclaimed wastewater treatment plants were transformed to the stable states. Meanwhile, the proportion of residual state of Cr, Cu, Pb, Ni, Cd and Zn in digested sludge was increased by 1.0%~19.2%. The RAC results showed that the risk indexes of heavy metals Cu, Hg, Pb, Cr, Cd and Zn in digested sludge were all less than 5%, which was at the level of no migration risk or low migration risk. Furthermore, with the background value of Beijing soil and the measured value of Daxing District soil in Beijing as reference values, the PERI results showed that the bioavailable and potentially available heavy metals in digested products were at a lower risk level. These results indicated that advanced anaerobic digestion process was conducive to the gradual transformation of other forms of heavy metals to the residual state, reducing their mobility and ecological risk.
-
表 1 不同重金属元素的毒性响应系数和背景参考值
Table 1. Reference
$C_n^i$ and toxic coefficient$T_r^i$ of different heavy metals重金属元素 背景值1) 背景值2) $ {T}_{r}^{i} $ As 7.09 6.5 10 Cd 0.12 0.1 30 Cr 29.8 50.6 2 Cu 18.7 15.4 5 Hg 0.03 0.1 40 Ni 26.8 50.2 5 Pb 24.6 11.7 5 Zn 57.5 51.7 1 注:1)为北京市土壤背景值;2)为北京市大兴区试点土壤实测值。 表 2 不同生态风险水平的划分
Table 2. Classification standard of
$E_r^i$ and RI$ {E}_{r}^{i} $ 潜在生态风险指数RI 潜在生态风险程度 $ {E}_{r}^{i} $ <40RI<150 低生态风险 40≤ $ {E}_{r}^{i} $ <80150≤RI<300 中等生态风险 80≤ $ {E}_{r}^{i} $ <160300≤RI<600 较高生态风险 160≤ $ {E}_{r}^{i} $ <320RI≥600 高生态风险 $ {E}_{r}^{i} $ ≥320— 极高生态风险 表 3 原污泥、消化污泥中重金属总量
Table 3. Concentrations of heavy metals in raw sludge and digested sludge
mg·kg−1 数据来源 As Cd Cr Cu Hg Ni Pb Zn GB 24188-2009[20] 75 20 1 000 1 500 25 200 1 000 4 000 CJ/T 309-2009 A级农用[21] 30 3 500 500 3 100 300 1500 CJ/T 309-2009 B级农用[21] 75 15 1 000 1 500 15 200 1 000 3 000 CJ/T 362-2011[22] 75 20 1 000 1 500 15 200 1 000 3 000 GB/T 23486-2009[23] 75 20 1 000 1 500 15 200 1 000 4 000 GB/T 24600-2009[24] 75 20 1 000 1 500 15 200 1 000 4 000 2004—2005年调查数据[17] 16.7~26.0 5.9~13.0 45.8~78.4 131.2~394.5 17.0~24.0 49.3~95.5 57.5~109.3 783.4~3 096.3 A再生水厂原污泥 18.2 0.9 66.8 229.6 2 34.9 28.5 602.2 A再生水厂消化污泥 16.1 1.1 87.5 367.4 4.3 42.8 38 889.1 B再生水厂原污泥 14.9 0.8 49.6 165.2 5.2 24.1 32.9 706.3 B再生水厂消化污泥 17.2 1 70.4 225.8 5.9 34.4 42.9 952 C再生水厂原污泥 11.9 0.6 42.1 143.2 4.9 22.8 20.4 522 C再生水厂消化污泥 11.4 0.8 51.1 147.7 5.5 26.6 26 695.6 D再生水厂原污泥 17.7 0.8 61.3 149.7 4.1 31.5 35 697.7 D再生水厂消化污泥 17.2 1.1 82.3 235.2 3.1 36.9 38.6 1 004.5 注:表中数据均为干基浓度。 表 4 B再生水厂原污泥、消化污泥TS、VS、VS/TS全年均值
Table 4. Annual average values of TS, VS, VS/TS in raw sludge and digested sludge of B sewage treatment plants
% 污泥类型 TS VS VS/TS 原污泥 16.5 10.1 61.2 消化污泥 5.6 2.7 48.3 表 5 消化污泥重金属风险评价指数(RAC)
Table 5. Risk assessment code (RAC) of heavy metals in digested sludge
水厂
代码As Cd Cr Cu Hg Ni Pb Zn RAC 风险
等级RAC 风险
等级RAC 风险
等级RAC 风险
等级RAC 风险
等级RAC 风险
等级RAC 风险
等级RAC 风险
等级A 22.3 MR 4.0 LR 0.5 NR 0.4 NR 0.1 NR 8.8 LR 0.3 NR 3.5 LR B 12.0 MR 4.6 LR 0.6 NR 0.3 NR 0.3 NR 6.8 LR 0.0 NR 3.3 LR C 25.1 MR 1.7 LR 0.9 NR 0.6 NR 0.2 NR 11.1 MR 0.0 NR 4.8 LR D 9.7 LR 0.2 NR 0.2 NR 0.4 NR 0.1 NR 4.3 LR 0.5 NR 3.2 LR 表 6 消化污泥中各重金属生态风险系数(
$ E_r^i$ )和潜在生态风险指数(RI)Table 6. Ecological risk factor and potential ecological risk index of heavy metals in digested sludge
水厂代码 $ {E}_{r}^{i} $ RI As Cd Cr Cu Hg Ni Pb Zn A* 10.1 32.9 2.0 6.0 39.5 5.0 4.9 1.1 101.5 B* 10.0 32.9 2.0 5.7 39.7 5.0 4.9 1.2 101.5 C* 10.0 31.8 2.0 5.4 39.6 5.0 4.9 1.1 99.8 D* 10.0 33.3 2.0 5.7 39.5 5.0 4.9 1.2 101.5 A** 10.1 33.6 2.0 6.3 39.4 5.0 4.9 1.2 102.3 B** 10.1 33.6 2.0 5.8 39.4 4.9 4.9 1.2 102.0 C** 10.0 32.3 2.0 5.5 39.4 4.9 4.9 1.1 100.2 D** 10.0 34.0 2.0 5.8 39.4 5.0 4.9 1.2 102.2 注:*为以北京市土壤背景值为参比值,**为以北京市大兴区试点土壤实测值为参比值。 -
[1] CHEN S Y. Occurrence characteristics and ecological risk assessment of heavy metals in sewage sludge[J]. IOP Conference Series: Earth and Environmental Science, 2019, 295: 052041. doi: 10.1088/1755-1315/295/5/052041 [2] 黄翔峰, 叶广宇, 穆天帅, 等. 污泥厌氧消化过程中重金属稳定性研究进展[J]. 环境化学, 2017, 36(9): 2005-2014. [3] ZHU N M, QIANG L, GUO X J, et al. Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals[J]. Ecotoxicology and Environmental Safety, 2014, 102: 18-24. doi: 10.1016/j.ecoenv.2013.12.033 [4] LIU T T, LIU Z G, ZHENG Q F, et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresoure Technology, 2018, 247: 282-290. doi: 10.1016/j.biortech.2017.09.090 [5] ZHANG Q, ZHANG L, SANG W J, et al. Chemical speciation of heavy metals in excess sludge treatment by thermal hydrolysis and anaerobic digestion process[J]. Desalination and Water Treatment, 2015, 57(27): 12770-12776. [6] BARBER W P F. Thermal hydrolysis for sewage treatment: A critical review[J]. Water Research, 2016, 104: 53-71. doi: 10.1016/j.watres.2016.07.069 [7] 于晓庆, 董滨, 何群彪, 等. 污水污泥和消化污泥热解过程中重金属迁移转化行为对比分析[J]. 净水技术, 2017, 36(12): 27-32. [8] HUANG H J, YUAN X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresoure Technology, 2016, 200: 991-998. doi: 10.1016/j.biortech.2015.10.099 [9] ZHANG M, YANG C M, JING Y C, et al. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge[J]. Waste Management, 2016, 58: 316-323. doi: 10.1016/j.wasman.2016.09.040 [10] LENG L J, YUAN X Z, HUANG H J, et al. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge[J]. Bioresoure Technology, 2014, 167: 144-150. doi: 10.1016/j.biortech.2014.05.119 [11] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [12] 刘亚纳, 郭旭明, 周鸣, 等. 洛阳城市污水处理厂污泥中重金属形态及潜在生态风险评价[J]. 环境工程学报, 2017, 11(2): 1217-1222. [13] 杨伟光, 陈卫平, 杨阳, 等. 新疆某矿冶区周边土壤重金属生物有效性与生态风险评价[J]. 环境工程学报, 2019, 13(8): 1930-1939. [14] 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1): 117-122. [15] 李廷芳, 刘宝元. 北京地区土壤背景值图的编制[J]. 地理学报, 1989, 44(1): 11-21. [16] 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461. [17] DAI J Y, XU M Q, CHEN J P, et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere, 2007, 66(2): 353-361. doi: 10.1016/j.chemosphere.2006.04.072 [18] 章蕾, 李孟, 曹磊, 等. 城市污泥热水解-厌氧消化-Fenton处理工艺中重金属稳定性研究[J]. 武汉理工大学学报, 2014, 36(1): 99-101. [19] DONG B, LIU X G, DAI L L, et al. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge[J]. Bioresoure Technology, 2013, 131: 152-158. doi: 10.1016/j.biortech.2012.12.112 [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥泥质: GB 24188-2009[S]. 北京: 中国标准出版社, 2009. [21] 中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置农用泥质: CJ/T 309-2009[S]. 北京: 中国标准出版社, 2009. [22] 中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置林地用泥质: CJ/T 362-2011[S]. 北京: 中国标准出版社, 2011. [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥处置园林绿化用泥质: GB/T 23486-2009[S]. 北京: 中国标准出版社, 2009. [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥处置土地改良用泥质: GB/T 24600-2009[S]. 北京: 中国标准出版社, 2009. [25] 陈泾涛, 唐治, 耿宇聪, 等. 厌氧消化对污泥中重金属及病原微生物的影响研究[J]. 中国沼气, 2015, 33(3): 10-16. [26] 高燕. 厌氧消化系统中污泥重金属形态转化及去除方法研究进展[J]. 北方环境, 2013, 25(8): 57-60. [27] 孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-68. [28] WU H M, LI M, ZHANG L, et al. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis[J]. Water Science and Technology, 2016, 73(4): 890-898. doi: 10.2166/wst.2015.537 [29] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007, 16(5): 1551-1556.