-
我国畜禽养殖业发展迅速,规模化养猪场的比例逐年增加,但畜禽粪便的资源化利用率较低,从而导致了较严重的环境污染问题,畜禽粪便已成为农业面源污染的主要来源[1]。干清粪收集工艺大大提高了粪便含固率,为开展农业废弃物厌氧干发酵技术创造了有利条件;同时,通过干发酵可获得丰富的清洁能源沼气,有利于我国农业的绿色可持续发展[2]。
厌氧干发酵处理能力大、用水量小、容积产气率高。而且,发酵后的沼渣含水率低,能够直接生产有机肥,有助于构建种养循环体系[3]。但是,由于农业废弃物组分结构复杂、难降解转化,易产生酸积累,会产生启动慢、传质效率低和发酵过程稳定性差等问题[4]。为有效缓解厌氧干发酵的酸抑制、提高其甲烷产率,相关学者开展了大量的研究工作。如齐利格娃等[5]研究了猪粪与稻草的不同原料配比对厌氧发酵性能的影响,当猪粪与稻草配比为2∶1时,丙酸含量较纯猪粪组减少了71.8%,累积VS甲烷产率较纯猪粪组相比提高了13.0%。于佳动等[2]研究了喷淋频率对玉米秸秆和牛粪的混合厌氧干发酵影响,当接种量为30%时,喷淋频率间隔8 h的有机酸浓度相较于间隔2 h增加了46.3%,累积甲烷产量也相应降低。刘春软等[6]研究了不同添加剂对猪粪厌氧干发酵特性的影响,添加2.5%的生物炭处理组的总有机酸(TVFAs)峰值较纯猪粪组减少了4.8%,平均甲烷含量提高了4.4%。
目前,关于厌氧干发酵酸积累的研究主要集中在发酵工艺改进和影响因素筛选及优化等方面,但由于喷淋和外源添加剂在实际应用中成本高且不易开展规模化应用,因此对避免和缓解干发酵中酸抑制仍需开展更深入的研究。本研究以猪粪为主要发酵底物,通过中温批式实验研究底物非混合接种对厌氧干发酵过程有机酸积累和产甲烷特性的影响,并采用修正的Gompertz动力学模型模拟产气过程,进而评估非混合接种对猪粪厌氧干发酵的促进作用。
非混合接种对猪粪厌氧干发酵产气特性的影响
Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure
-
摘要: 为达到缓解猪粪厌氧干发酵时有机酸的积累并能够同时提高产气性能的目的,采用小试批式实验,在中温(37 ℃)、总固体(TS)为20%的条件下研究了猪粪接种物全混合发酵、猪粪非混合接种发酵、猪粪玉米秸秆与接种物全混合发酵及猪粪玉米秸秆混合原料非混合接种发酵这4种方式对发酵体系的有机酸积累及产甲烷特性的影响。结果表明,猪粪接种物全混合发酵和猪粪玉米秸秆与接种物全混合发酵的总有机酸(TVFAs)质量浓度在发酵结束时分别为15.2和3.6 mg·g−1,较对应底物的非混合接种发酵分别提高了6.3倍和5.0倍。在2种非混合接种发酵体系中,TVFAs质量浓度在21 d后迅速降低。其中,猪粪玉米秸秆混合原料非混合接种的TVFAs下降幅度更大,其第30天的TVFAs质量浓度低于1.5 mg·g−1。猪粪玉米秸秆混合原料非混合接种厌氧发酵产气效果最佳,累积VS产甲烷量达到148.2 mL·g−1。猪粪非混合接种发酵沼气中甲烷含量最高,达到75.1%。修正的Gompertz模型拟合结果显示,猪粪玉米秸秆混合原料非混合接种发酵和猪粪非混合接种发酵的迟滞期分别为10.6和12.4 d,较对应底物的混合接种发酵分别缩短了5.9和6.1 d;最大VS产甲烷速率分别提高了1.7倍和4.9倍,达到6.2和4.8 mL·(g·d)−1。非混合接种能够缓解猪粪厌氧干发酵的酸抑制并同时提高其甲烷产率。Abstract: In order to alleviate the accumulation of organic acids and enhance the methane production, a small batch experiment was performed in a self-made vertical plexiglass reactor under mesophilic temperature of 37 °C and total solids (TS) of 20%. Pig manure was used as major substrate with different seeding ways including full mixed seeding digestion and inoculum, non-mixed seeding digestion, full mixed digestion maize straw and inoculum, and non-mixed seeding digestion of mixed pig manure and maize straw. The results showed that the mass concentration of total volatile fatty acids (TVFAs) were 15.2 mg·g−1 and 3.6 mg·g−1 with the seeding ways of mixed seeding digestion of the full mixed seeding digestion of pig manure and full mixed raw materials of pig manure and maize straw respectively, which were 6.3 times and 5.0 times higher than that of the corresponding non-mixed seeding raw materials. In the non-mixed seeding system, the TVFAs mass concentration rapidly decreased on day 21. Particularly, the TVFAs mass concentration of the pig manure and straw mixed raw material was lower than 1.50 mg·g−1 on day 30. In addition, the methane yield of non-mixed seeding digestion of the mixed raw materials of pig manure and maize straw reached a highest value of 148.2 mL·g−1, along with a highest methane content of 75.1%. The fitting results of the modified-Gompertz model showed that the fermentation lag time of non-mixed seeding digestion of the mixed raw materials of pig manure and maize straw and non-mixed seeding digestion of pig manure were 10.6 days and 12.4 days respectively, which were 5.9 days and 6.1 days shorter than that of corresponding mixed seeding raw materials. Moreover, the cumulative methane yields reached 6.2 and 4.8 mL·(g·d)−1, respectively, which was increased by 1.7 times and 4.9 times. These results demonstrated that the non-mixed seeding could effectively alleviate the organic acid inhibition and increase methane yield during the dry anaerobic digestion of pig manure.
-
Key words:
- agro-byproduct /
- non-mixed seeding /
- dry anaerobic digestion /
- acid inhibition /
- pig manure /
- methane production
-
表 1 底物和接种物特征
Table 1. Characteristics of substrates and inoculum
供试原料 TS/% VS/% C/N pH 猪粪 26.01 82.83 11.56±0.37 7.94 玉米秸秆 88.85 90.18 58.96±0.82 — 接种物 13.69 58.46 — 8.23 表 2 实验设计
Table 2. Experimental design
实验组 底物 猪粪与
玉米秸秆比值底物与接
种物比值接种方式 P-C 猪粪 — 3∶1 混合接种 P-CL 猪粪 — 3∶1 非混合接种 P-M 猪粪+玉米秸秆 1∶1 3∶1 混合接种 P-ML 猪粪+玉米秸秆 1∶1 3∶1 非混合接种 表 3 修正的Gompertz方程参数
Table 3. Parameters of modified Gompertz model
实验组 P/(mL·g−1) Rmax/(mL·(g·d)−1) λ/d R2 P-C 52.6 0.98 18.51 0.994 P-CL 150.2 4.84 12.43 0.997 P-M 125.9 3.63 16.48 0.995 P-ML 163.8 6.24 10.62 0.999 -
[1] 耿维, 胡林, 崔建宇, 等. 中国区域畜禽粪便能源潜力及总量控制研究[J]. 农业工程学报, 2013, 29(1): 171-179. [2] 于佳动, 赵立欣, 冯晶, 等. 序批式玉米秸秆牛粪混合厌氧干发酵产甲烷工艺优化研究[J]. 农业工程学报, 2018, 34(S1): 86-92. [3] BROWN D, SHI J, LI Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production[J]. Bioresource Technology, 2012, 124(11): 379-386. [4] FAGBOHUNGBE M O, DODD I C, HERBERT B M J, et al. High solid anaerobic digestion: Operational challenges and possibilities[J]. Environmental Technology and Innovation, 2015, 4: 268-284. doi: 10.1016/j.eti.2015.09.003 [5] 齐利格娃, 高文萱, 杜连柱, 等. 粪草比对猪粪与稻草干发酵产沼气及古菌群落的影响[J]. 农业工程学报, 2018, 34(23): 232-238. doi: 10.11975/j.issn.1002-6819.2018.23.030 [6] 刘春软, 童巧, 汪晶晶, 等. 不同添加剂对猪粪厌氧发酵的影响[J]. 中国沼气, 2018, 36(5): 30-35. doi: 10.3969/j.issn.1000-1166.2018.05.006 [7] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [8] 胡荣笃. 用乙酸计量各种脂肪酸时的换算方法[J]. 中国沼气, 1995, 13(2): 46-47. [9] 马琳. 快速消解分光光度法测量CODCr与传统方法的对比实验[J]. 现代仪器, 2010, 16(4): 62-65. [10] KIM D H, OH S E. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions[J]. Waste Management, 2011, 31(9): 1943-1948. [11] ZHANG W Q, LANG Q Q, WU S B. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China[J]. Bioresource Technology, 2014, 156: 63-69. doi: 10.1016/j.biortech.2014.01.013 [12] LI D W, ZHOU T, CHEN L. Using porphyritic andesite as a new additive for improving hydrolysis and acidogenesis of solid organic wastes[J]. Bioresource Technology, 2009, 100(23): 5594-5599. doi: 10.1016/j.biortech.2009.06.005 [13] WANG Y, ZHANG Y, WANG J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass Bioenergy, 2009, 33(5): 848-853. doi: 10.1016/j.biombioe.2009.01.007 [14] YU J, ZHAO Y, ZHANG H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2016, 59: 487-497. [15] WANG Z J, XU F Q, LI Y B. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover[J]. Bioresource Technology, 2013, 144: 281-287. doi: 10.1016/j.biortech.2013.06.106 [16] 温博婷. 木质纤维素原料的酶解糖化及厌氧发酵转化机理研究[D]. 北京: 中国农业大学, 2015. [17] 陈兴春, 郑颖, 刘宏波, 等. 基于pH调控的城市污泥厌氧发酵产酸小试研究[J]. 环境科学学报, 2015, 35(4): 1067-1073. [18] 宋香育, 张克强, 房芳, 等. 工艺措施对猪粪秸秆混合厌氧干发酵产气性能的影响[J]. 农业工程学报, 2017, 33(11): 233-239. doi: 10.11975/j.issn.1002-6819.2017.11.030 [19] CAI Y, WANG J, ZHAO Y, et al. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion[J]. Water Research, 2018, 140: 335-343. doi: 10.1016/j.watres.2018.04.047 [20] 田梦, 刘晓玲, 李十中, 等. 香蕉秸秆与牲畜粪便固体联合厌氧发酵产沼气的特性[J]. 农业工程学报, 2013, 29(7): 177-184. [21] 李丹妮, 张克强, 梁军锋, 等. 三种添加剂对猪粪厌氧干发酵的影响[J]. 农业环境科学学报, 2019, 38(8): 1777-1785. doi: 10.11654/jaes.2019-0587 [22] 刘战广, 朱洪光, 王彪, 等. 粪草比对干式厌氧发酵产沼气效果的影响[J]. 农业工程学报, 2009, 25(4): 196-200. [23] 孔德望. 猪粪厌氧干发酵产气性能与微生物群落结构研究[D]. 沈阳: 沈阳农业大学, 2018. [24] 陈闯, 邓良伟, 信欣, 等. 上推流厌氧反应器连续干发酵猪粪产沼气实验研究[J]. 环境科学, 2012, 33(3): 1033-1040. [25] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057 [26] HANSEN K, ANGELIDAKI I, AHRING B. Anaerobic digestion of swine manure: Inhibition by ammonia[J]. Water Research, 1998, 32(1): 5-12. doi: 10.1016/S0043-1354(97)00201-7