非混合接种对猪粪厌氧干发酵产气特性的影响

李丹妮, 张克强, 孔德望, 梁军锋, 杜连柱. 非混合接种对猪粪厌氧干发酵产气特性的影响[J]. 环境工程学报, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
引用本文: 李丹妮, 张克强, 孔德望, 梁军锋, 杜连柱. 非混合接种对猪粪厌氧干发酵产气特性的影响[J]. 环境工程学报, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
LI Danni, ZHANG Keqiang, KONG Dewang, LIANG Junfeng, DU Lianzhu. Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
Citation: LI Danni, ZHANG Keqiang, KONG Dewang, LIANG Junfeng, DU Lianzhu. Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150

非混合接种对猪粪厌氧干发酵产气特性的影响

    作者简介: 李丹妮(1996—),女,硕士研究生。研究方向:废弃物资源化利用。E-mail:18788857190@163.com
    通讯作者: 杜连柱(1979—),男,博士,研究员。研究方向:废弃物资源化利用。E-mail:dulianzhu99@163.com
  • 基金项目:
    国家重点研发计划项目(2016YFD0501407);中国农业科学院协同创新任务(CAAS-XTCX2016015);中央级公益性科研院所基本科研业务费专项资金资助项目(szjj-2019-ljf)
  • 中图分类号: X705

Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure

    Corresponding author: DU Lianzhu, dulianzhu99@163.com
  • 摘要: 为达到缓解猪粪厌氧干发酵时有机酸的积累并能够同时提高产气性能的目的,采用小试批式实验,在中温(37 ℃)、总固体(TS)为20%的条件下研究了猪粪接种物全混合发酵、猪粪非混合接种发酵、猪粪玉米秸秆与接种物全混合发酵及猪粪玉米秸秆混合原料非混合接种发酵这4种方式对发酵体系的有机酸积累及产甲烷特性的影响。结果表明,猪粪接种物全混合发酵和猪粪玉米秸秆与接种物全混合发酵的总有机酸(TVFAs)质量浓度在发酵结束时分别为15.2和3.6 mg·g−1,较对应底物的非混合接种发酵分别提高了6.3倍和5.0倍。在2种非混合接种发酵体系中,TVFAs质量浓度在21 d后迅速降低。其中,猪粪玉米秸秆混合原料非混合接种的TVFAs下降幅度更大,其第30天的TVFAs质量浓度低于1.5 mg·g−1。猪粪玉米秸秆混合原料非混合接种厌氧发酵产气效果最佳,累积VS产甲烷量达到148.2 mL·g−1。猪粪非混合接种发酵沼气中甲烷含量最高,达到75.1%。修正的Gompertz模型拟合结果显示,猪粪玉米秸秆混合原料非混合接种发酵和猪粪非混合接种发酵的迟滞期分别为10.6和12.4 d,较对应底物的混合接种发酵分别缩短了5.9和6.1 d;最大VS产甲烷速率分别提高了1.7倍和4.9倍,达到6.2和4.8 mL·(g·d)−1。非混合接种能够缓解猪粪厌氧干发酵的酸抑制并同时提高其甲烷产率。
  • 1,4-丁炔二醇(1,4-butynediol, BYD)是一种重要的化工原料,主要用于合成1,4-丁二醇(1,4-butanediol, BDO),进而生产四氢呋喃、聚四亚甲基乙二醇醚(PTMEG)、聚对苯二甲酸丁二醇酯(PBT)和聚丁二酸丁二醇酯(PBS)等重要化工产品[1-3]。目前,我国已经是世界上最大的BDO生产国[4],BDO生产首先利用乙炔和甲醛经铜铋催化合成BYD,BYD再经过精馏提浓,提浓后BYD需要通过阴阳离子树脂脱除含有的铜离子、二氧化硅和醋酸根离子等杂质,进而再催化加氢生成BDO[5]。其中,阴阳离子树脂再生产生的脱离子废液含有高浓度BYD残留[6],废水化学需氧量(chemical oxygen demand, COD)可达到6 000~20 000 mg·L−1,是BDO生产过程产生的主要高浓度有机废水,由于部分企业使用5%的硫酸进行阳离子树脂再生,从而导致该废水中硫酸盐含量也较高(6 000~10 000 mg·L−1)。BYD脱离子废液与生活污水、冲洗废水和BDO精馏废水等低浓浓度有机废水混合后即为BDO生产废水,BYD脱离子废液水量占BDO生产废水的比例为50%~70%。 BYD脱离子废液的高效低耗处理是BDO生产废水处理的关键。

    厌氧生物处理技术因为具有能耗低、可回收甲烷气和污泥产量少等优势,广泛应用于高浓度有机废水的预处理[7]。其利用水解产酸菌、互养产氢产乙酸菌和产甲烷菌的协作实现有机物的厌氧甲烷转化[8]。当废水中含有硫酸根离子时,硫酸盐还原菌(sulfate reducing bacteria,SRB)也会参与厌氧代谢过程,在低浓度硫酸盐含量条件下,SRB可以促进难降解有机物的降解和乙酸产生,进而促进甲烷代谢[9];当硫酸盐含量过高时,硫酸盐还原产生的过多硫化氢可以抑制产甲烷古菌和SRB,进而抑制厌氧有机物代谢[10]。考虑到BYD是BDO生产脱离子废液的主要COD贡献者,阐明其在不同厌氧处理条件下的生物降解效果,对于脱离子废液及其他高含BYD废水的处理工艺设计具有重要指导意义。

    目前关于BYD可生化性的研究较少,GOTVAJN[11]和TISLER等[12]利用快速生物降解实验方法评估了BYD的好氧可生化性,发现在60 d的培养周期内BYD浓度基本没有降低,认为BYD是一种不易生物降解有机物。陈庆磊等[13]利用批次实验评估了BDO生产废水的厌氧处理效果,发现COD去除率约为56%,没有研究BYD的去除率。且BYD分子中含有内炔烃超共轭结构,化学性质十分稳定[11],明确BYD厌氧可生化性对于指导工程实践具有积极意义。

    因此,本研究联合使用批次和连续实验方法评估了BYD在厌氧生化处理过程中的生物降解效果,同时测定了COD、BYD、硫酸盐浓度变化及微生物群落的演替情况,研究结果可为含BYD工业废水的处理提供指导。

    实验所用BYD购自上海麦克林生化科技股份有限公司(纯度98%),为白色斜方结晶,用纯水配成50 000 mg·L−1储备液,4 ℃保存。厌氧生化实验的外加微量元素营养液组成为[14]:MgCl2 (30 mg·L−1)、NiCl2 (10 mg·L−1)、CoCl2 (10 mg·L−1)、FeCl2 (40 mg·L−1)、CaCl2 (20 mg·L−1)、ZnSO4 (20 mg·L−1)、MnSO4 (20 mg·L−1)。CaCl2等常规化学试剂均为分析纯,购自天津市科密欧化学试剂有限公司。

    本实验所用厌氧颗粒污泥为安徽宿州某酒精厂污水处理站的厌氧颗粒污泥,外形为规则球形,颗粒直径为0.5~4.0 mm;活性污泥采自河北石家庄市某市政污水处理厂缺氧池污泥,絮状,沉降性能优良。

    厌氧批次实验在AMPTS® II自动甲烷潜力测试系统(BPC Instruments AB)中进行。为探究BYD是否可在纯厌氧产甲烷体系降解、复配活性污泥和SO42−还原是否可促进BYD厌氧降解,厌氧批次实验一共设置了3组实验,每组2个平行,同时设置没有厌氧污泥接种的空白组。实验组污泥浓度均控制在15 000 mg·L−1,pH=7.1,具体物料组成见表1,硫酸盐组控制BYD/SO42− =0.299 (对应COD/SO42− 的质量比为0.5)。各组实验均加入1 mL微量元素溶液,反应总体积均为400 mL,利用恒温水浴控制反应温度稳定在37 ℃。

    表 1  厌氧批次实验设计
    Table 1.  Design of anaerobic batch experiments mg·L−1
    实验组别 接种污泥 BYD 碱度(以CaCO3计) NH4Cl KH2PO4 K2HPO4 SO42−
    颗粒污泥组 厌氧颗粒污泥 500 1 000 140 30 30
    污泥复配组 厌氧颗粒污泥与活性污泥复配a 500 1 000 140 30 30
    外加硫酸盐组 厌氧颗粒污泥与活性污泥复配a 500 1 000 140 30 30 1 670
      注:厌氧颗粒污泥与活性污泥浓度比为2:1。
     | Show Table
    DownLoad: CSV

    厌氧连续实验在2套平行中温有效容积为6.3 L的UASB反应器进行,种泥为30%活性污泥与70%厌氧颗粒污泥复配污泥。进水水质模拟内蒙古某BDO生产企业的实际BYD脱离子废液水质配置(表2),进水COD由葡萄糖和BYD组成,氮源为氨氮,磷源为磷酸二氢钠,碱度由碳酸氢钠贡献,微量元素(Fe、Mn、Zn、Co)添加参考KONG等[10],进水pH调至7.2±0.2,进水基质桶水温由低温水浴控制在4 ℃。反应器各阶段具体运行参数见表2

    表 2  厌氧UASB反应器不同阶段的运行参数
    Table 2.  Operating parameters of anaerobic UASB reactors at different stages
    阶段 HRT(d) 有机负荷(以COD计) COD/SO42−(质量比) BYD(mg·L−1) 葡萄糖(mg·L−1) TCOD(mg·L−1) SO42−(mg·L−1)
    S1 10 0.5 4 686 5 000
    S2 10 1 2 980 4 686 10 000
    S3 10 1 10 2 980 4 686 10 000 1 000
    S4 10 1 5 2 980 4 686 10 000 2 000
    S5 10 1 1 2 980 4 686 10 000 10 000
    S6
     | Show Table
    DownLoad: CSV

    厌氧发酵气体首先通过二氧化碳吸收瓶(含有3 M的氢氧化钠),之后利用湿式气体流量计记录每日产气量。污水样品经0.22 μm滤膜过滤后,滤液用于各指标测试,其中COD和SO42−测定参照水质测定标准[15]。针对硫酸盐还原体系,滤液首先经过曝气去除溶液中的硫化物,通过硫化物测定试纸(陆恒生物)不变蓝判断硫化物被完全去除,之后再过滤测定COD。采用GC-FID (岛津GC2010 plus)测定BYD浓度,选用SH-Stabilwax-DA柱(30 m×0.25 mm×0.25 μm) 作为气相色谱柱,温度程序如下:100 ℃保留1 min,以20 ℃·min−1升温至120 ℃,保留4 min,之后以20 ℃·min−1升温至220 ℃,保留5 min。进样口和检测器温度分别为240 ℃和260 ℃。氦气作载气,初始压力为400 kPa。采用外标法测定BYD含量,每次测试新配置标准曲线。采用内标法测定挥发性脂肪酸(VFAs)含量,取1mL滤液加入1-丁醇内标(2 000 mg·L−1)后,使用GC-FID (岛津GC2010 plus)测定VFAs浓度,选用Restek Stabilwax-DA柱(30 m×0.53 mm×0.1 μm) 作为气相色谱柱,温度程序如下:70 ℃保留1 min,以20 ℃·min−1升至150 ℃,之后以4 ℃·min−1升至 160 ℃,再以20 ℃·min−1升至210 ℃,保留2 min。进样口和检测器温度分别为240 ℃和260 ℃。氦气作载气,初始压力为167.3 kPa。

    针对UASB反应器,在每个运行阶段结束时分别从2个平行反应器中收集厌氧污泥样品,使用FastDNATM SPIN Kit (MP Biomedicals, Solon, USA)试剂盒提取DNA,使用NanoDrop分光光度计(ND-2000, NanoDrop Technologies, USA)测定DNA浓度和纯度。提取后DNA使用515F (GTGCCAGCMGCCGCGG)和907R (CCGTCAATTCMTTTRAGTTT)引物扩增细菌16S rRNA基因[16],PCR扩增产物送至上海美吉生物医药科技有限公司进行NovaSeq PE250测序。测序数据存储于NCBI SRA (链接号:PRJNA1108964)。测序数据质控、OUT (operational taxonomic units)聚类、细菌菌属注释和主坐标分析(PCoA)通过美吉生物云平台(https://cloud.majorbio.com/)完成。

    图1(a)所示,空白组中BYD不会因为水解、挥发等原因而浓度下降。在单一厌氧颗粒污泥接种的实验组,BYD降解缓慢,31 d实验结束时去除率仅为40.72%,对应的降解速率为6.6 mg·(L·d)−1 (图1(b)),且COD去除与BYD降解表现出较高的一致性(相关系数R2=0.908,P<0.05)。KONG等[17]报道活性污泥与厌氧颗粒污泥的复配可以提高N-N-二甲基甲酰胺的厌氧产甲烷效果,发现N-N-二甲基甲酰胺首先被活性污泥中兼性厌氧水解微生物转化为二甲胺和一甲胺等中间体,再被产甲烷古菌直接利用,从而促进了N-N-二甲基甲酰胺的完全厌氧降解。厌氧颗粒污泥与活性污泥复配有可能也会促进BYD的厌氧降解,因此开展了2种污泥复配的BYD降解实验,结果如图1(c)所示。复配活性污泥后,BYD的降解速率加快,达到9.9 mg·(L·d)−1,在31 d实验结束时BYD的去除率达到了65.71%,较单一厌氧颗粒污泥实验组提升了25.01%。但是需要指出,实验结束时污泥复配体系的COD去除率仅为29.43%,与单一颗粒污泥体系(33.02%)基本一致。将实验结束时残留BYD浓度转化为COD理论值为281.2 mg·L−1,小于COD实测值(658.5 mg·L−1),表明虽然活性污泥接种带入的BYD兼性厌氧水解菌可以将BYD转化为未知有机中间产物,使得其母体物质浓度降低速度加快,但生成的中间产物仍难以被产甲烷古菌降解。除了产甲烷古菌,在硫酸盐含量较高的厌氧体系中,SRB可以利用乳酸、丙酸和醇类等多种有机物作为电子供体[18],SO42−为电子受体,将有机物降解并将SO42−还原成硫化氢[19]

    图 1  批次实验中3种厌氧生化条件下BYD的降解情况
    Figure 1.  Degradation of BYD in three anaerobic digestion systems

    考虑到BYD分子中含有羟基,有可能作为SRB的电子供体而被降解。因此,在复配污泥作为种泥的条件下进一步加入硫酸盐,探究硫酸盐还原是否可以加速BYD的厌氧降解。结果如图1 (d)所示,加入硫酸盐后,复配污泥中BYD降解速率进一步提升至11.2 mg·(L·d)−1,在31 d实验结束后去除率达到79.46%,比单一厌氧颗粒污泥和复配污泥实验组的BYD去除率分别提高了38.74%和13.75%。同时,COD的最终去除率达到52.03%,比单一厌氧颗粒污泥和复配污泥实验组分别提高了19.01%和22.60%。混合液SO42−的质量浓度变化与BYD和COD的质量浓度变化都表现出显著的正相关关系(P<0.05) (图1 (d))。实验开始后(0~6 d),SO42−质量浓度即快速降低(图1 (d)),表明反应起始硫酸盐还原作用即占据主导,这可能与本研究中采用的低COD/SO42− (0.5)有关。HAO等[20]报道COD/SO42−低于1.5时,SRB会获得生长优势,厌氧代谢以硫酸盐还原为主。在反应结束时,SO42−去除率为57.32%,对应的单位硫酸盐去除所需的COD比例为0.5,低于与WU等之前报道的乙醇和醋酸盐合成废水单位硫酸盐去除所需的COD比例(0.6)[21]。将实验结束时混合液残留BYD的质量浓度转化为理论COD值为171.6 mg·L−1,同样小于实测COD值441 mg·L−1,说明外加硫酸盐虽然提高了BYD的降解,但是体系中仍有部分BYD的厌氧转化产物难以被SRB利用。

    1)反应器运行效果。短期批次实验可以初步评估目标污染物的厌氧降解性能,而长期连续实验可以进一步解析厌氧微生物群落经过长期驯化后对目标污染物的生物降解效果(这与实际废水处理系统运行状况更相似),2种方法的结合可以更全面地解析目标污染物的厌氧降解性能[7]。本研究中,批次实验结果表明BYD在厌氧产甲烷体系中降解较慢,厌氧颗粒污泥复配活性污泥和外加硫酸盐均可以加速BYD的厌氧降解。为此,进一步参考实际BDO生产脱离子废液水质(COD为6 000~20 000 mg·L−1,SO42−含量为6 000~10 000 mg·L−1),建立了2套平行的UASB反应器评估了长期运行情况下BYD的厌氧降解效果,结果如图2所示。UASB反应器一共运行了388 d,根据进水水质变化分为S1~S6 6个阶段(表2)。

    图 2  不同进水条件下UASB运行效果
    Figure 2.  Performance of UASBs at different stages

    UASB反应器以葡萄糖为唯一碳源启动,运行20 d之后出水COD值低于120 mg·L−1,VFAs低于30 mg·L−1 (图2(b)和图2(d)) (S1阶段),证明厌氧污泥活性优良。在第21天,反应器进水加入2 980 mg·L−1的BYD (S2阶段),此后反应器出水COD值和BYD质量浓度逐渐上升,在52 d分别稳定在约5 000 mg·L−1和2 965 mg·L−1,对应的COD和BYD去除率仅约50.33%和0.50% (图2(a)~(b)),且在此过程中CH4产率未出现下降(图2 (e)),VFAs未累积(图2(d))。在第83天,反应器出水VFAs和COD值急剧上升,在105 d VFAs达到了1 780 mg·L−1,主要由乙酸组成(图2(d)),同时出水COD也上升到了9 365 mg·L−1 (图2(b)),COD去除率下降至6.37%,UASB出现了VFAs累积现象。考虑到BYD分子中含有—C≡C—和—OH等结构,易于与金属离子络合[22],当其质量浓度过高时(如本文的2 980 mg·L−1)可络合带走过多铁、钴、镍等微量金属元素,导致可用于产甲烷古菌维持正常生命活动的微量金属元素含量降低,从而导致厌氧产甲烷微生物失活。随后在111 d将进水中微量元素质量浓度翻倍,反应器出水VFAs和COD值随即快速下降,系统产气恢复(图2 (e))。之后继续对UASB反应器进行了42 d的连续监测,系统再未出现抑制情况,但BYD去除率也没有进一步提升,表明即使经过长期驯化厌氧产甲烷微生物代谢体系中BYD降解速率仍较低。

    此后,向反应器引入硫酸盐共运行了3个阶段(S3~S5),通过提高进水硫酸盐质量浓度使各阶段COD/SO42−分别为10、5和1。在S3阶段(167~215 d),进水COD/SO42− =10的情况下,UASB反应器CH4产率从0.89 L·d−1提升至1.07 L·d−1,表明少量硫酸盐加入提高了厌氧甲烷产率。同时,该阶段COD去除率为50.56%,SO42−去除率为97.15%,出水BYD质量浓度先下降后上升,最终稳定在2 847 mg·L−1,对应去除率为3.92% (图2 (a)、(b))。

    在S4阶段(216~260 d),将COD/SO42−降低至5,CH4产率从1.07 L·d−1迅速降低至0.41 L·d−1,而VFAs未发生累积(图2(d)),BYD去除率略提升至4.83%,COD去除率为51.02%,SO42−去除率93.81%。上述结果说明此阶段厌氧生化系统仍然能保持正常运行,但硫酸盐还原作用已经显著增强,开始与产甲烷代谢共同承担对乙酸的降解。

    在S5阶段(263~369 d),进一步将进水COD/SO42−下调到1,出水BYD质量浓度明显降低,去除率从S4阶段的4.83%提高到21.92% (图2(a))。但同时,厌氧生物系统迅速受到抑制,COD去除率从51.02%下降至20.31%,SO42−去除率从93.81%下降至24.48%,并且VFAs (主要为乙酸)快速累积至2 824 mg·L−1 (图2 (d)),这可能是由于在COD/SO42− =1的条件下,硫酸盐还原已经成为主导的厌氧有机物降解途径[23],但是进水SO42−质量浓度过高,导致产生的硫化氢质量浓度超过了SRB和产甲烷古菌的耐受阈值,从而抑制了乙酸的进一步转化。O'FLAHERTY等[10]曾报道游离硫化氢对厌氧微生物的抑制阈值为38~185 mg·L−1,而本研究S5阶段UASB反应器内理论游离硫化氢质量浓度已经超过214.7 mg·L−1 (约占总硫化物8.82%)[19],厌氧微生物活性可被完全抑制。在第370天采取停止进水的方式试图恢复厌氧系统活性(S6阶段),在18 d的恢复期内,反应器内BYD、COD、SO42−和VFAs均有下降趋势,但下降趋势较慢。

    2)微生物群落演替。利用高通量测序技术分析了UASB连续实验过程中厌氧污泥细菌群落的演替情况。如图3所示,BYD的投加(S2)显著改变了污泥中厌氧微生物群落结构,硫酸盐的投加(S3~S6)进一步显著改变了UASB厌氧系统微生物群落的结构,而在S3~S6阶段COD/SO42−的改变及停止进水过程中细菌群落结构相对稳定。

    图 3  UASB反应器不同阶段下细菌群落结构的β多样性分析(PCoA分析,OTU水平)
    Figure 3.  PCoA analysis of bacterial communities at OUT level in UASBs at different stages

    门水平下细菌群落变化如图4所示,种泥(S1阶段)细菌以绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidota)、热孢菌门(Thermotogae)、互养菌门(Synergistota)和螺旋体门(Spirochaetota)为主,其中部分Proteobacteria和Spirochaetota细菌具有硫酸盐还原功能[24]。投加BYD后(S2阶段),Firmicutes、Proteobacteria和Spirochaetota相对丰度分别从18.13%、9.17%和0.71%增加到32.68%、15.53%和5.67%,而Chloroflexi门丰度从21.63%减少至7.44%。进水增加硫酸盐后,在S3阶段脱硫杆菌门(Desulfobacterota)、Spirochaetota和Cloacimonadota门细菌相对丰度分别由1.09%、5.67%和0.27%增加至4.53%、14.98%和11.35%,其中Cloacimonadota门细菌通常存在于厌氧发酵系统中,宏基因组组装基因组分析揭示其是一种潜在的乙酸产生菌[25],而多种Desulfobacterota门细菌(如Syntrophobacter、Desulfoglaeba和Desulfovibrio)同时是丙酸氧化产乙酸菌和SRB,在高COD/SO42−条件下可获得更大的生存优势,成为产甲烷古菌的主要互养微生物[20, 26-28]。随着COD/SO42−降低至5(S4阶段),厌氧系统硫酸盐还原作用被进一步加强(图2 (e)),Desulfobacterota和Proteobacteria相对丰度分别从4.53%和6.45%上升到12.64%和9.75%,而Cloacimonadota和Spirochaetota相对丰度略有降低。在S5与S6阶段,Firmicutes与Chloroflexi相对丰度分别从29.08%和7.33%减少至16.04%和2.18%,Bacteroidota和Synergistota相对丰度分别从8.30%和5.07%提升至16.88%和10.49%,而Desulfobacterota和Proteobacteria丰度基本不变(图4)。

    图 4  不同运行阶段UASB污泥细菌群落组成(门水平)
    Figure 4.  Changes in bacterial communities at phylum level in UASB at different stages

    考虑到硫酸盐还原作用可以增强BYD的厌氧降解,进一步在属水平上分析了实验过程中UASB内SRB的变化(图5)。本研究共检出属于5个门64个属的SRB,其中丰度较高的22个SRB在种泥中的总丰度为2.76%,优势SRB菌为互营杆菌属(Syntrophobacter) (0.76%)、史密斯氏菌属(Smithella) (0.60%)和脱硫弧菌属(Desulfovibrio) (0.41%)。S2阶段引入BYD后,厌氧污泥中SRB种类未变,但总丰度明显减少(1.17%) (图5)。进入S3阶段(进水COD/SO42− =10),DesulfovibrioSyntrophobacterSmithella快速生长,相对丰度分别从0.05%、0.11%和0.22%增加至1.46%、0.86%和1.42%。这3个菌属均属于Desulfobacterota[28],其中SyntrophobacterSmithella为互养产乙酸菌,其可利用硫酸盐作为电子受体氧化丙酸等多种有机物,生成乙酸和二氧化碳[29],从而为产甲烷古菌提供更多的甲烷前驱物,促进甲烷代谢。而Desulfovibrio为不完全氧化型SRB[30],在COD/SO42−≥10的条件下,同样可利用硫酸盐作为电子受体氧化乳酸、丙酸等有机物生成乙酸,从而提高了乙酸产量,促进甲烷代谢[21, 29]

    图 5  不同运行阶段UASB污泥中硫酸盐还原菌在属水平上的丰度变化
    Figure 5.  Change in the abundances of sulfate reducing bacteria at Genus level in bacterial communities at different stages of UASBs

    上述3个菌属的富集可能是S3阶段观测到甲烷产率提升的原因(图2(e))。在S4阶段COD/SO42−进一步降低到5后,SRB总丰度增加至12.6%,DesulforhabdusDesulfovibrio取代SyntrophobacterSmithella成为优势SRB。其中,Desulforhabdus丰度由S3阶段的0.04%显著提升至4.42%,其是一种完全氧化型SRB,可利用硫酸盐作为电子受体完全氧化乙酸等有机物生成二氧化碳和硫化物[29, 31-32],进而减少了可用于甲烷代谢的乙酸量。因此,完全氧化型SRB与产甲烷古菌对乙酸的竞争应该是S4阶段UASB反应器甲烷产率明显下降(图2(e))的主要原因。

    进入S5阶段,虽然SRB总丰度有所降低,但是Desulforhabdus的相对丰度进一步增加至5.19%,说明在低COD/SO42−条件下完全氧化型SRB会获得生存优势。Desulforhabdus的进一步富集,一方面会使更多的乙酸用于硫酸盐还原,从而进一步减少甲烷产生;另一方面,在高硫酸盐存在下,完全氧化型硫酸盐还原产生的过多硫化氢会同时抑制产甲烷古菌和SRB(包括Desulforhabdus)[10],这就导致了在S5阶段基本无甲烷产生(图2(e)),VFAs (特别是乙酸)显著累积(图2(d)),同时硫酸盐去除有限(图2(c))。需要指出,尽管S5阶段硫酸盐还原作用被显著抑制,BYD的降解仍得到显著提升(图2(a)),同时BYD的降解效率提升与Desulforhabdus丰度增加有一定相关性(图2(a)和图5),说明完全氧化型SRB (Desulforhabdus)可能是BYD的潜在降解菌。MOTTERAN等[33]曾报道Desulforhabdus参与了直链烷基苯磺酸盐这类难降解有机物的厌氧降解,且硫酸盐浓度会影响其降解效果。除Desulforhabdus外,部分水解产酸菌(如Caldicoprobacter, Anaerofustis, Lachnoclostridium, Thiobacillus)和互养产酸菌(Thermovirga)的丰度变化与BYD的降解效果同样表现出显著正相关性(Spearman相关,P<0.05)。后续研究需结合纯菌筛选和降解实验以进一步确认BYD的厌氧降解菌。

    在S6阶段,另一种不完全氧化型SRB (Desulfocurvus)[34-35]丰度显著增加(图5)。COLIN等[36]同样在含高浓度乙酸盐的河口沉积物(厌氧环境)中检测到高丰度的Desulfocurvus。这可能是因为虽然Desulfocurvus主要利用硫酸盐作为电子受体氧化乳酸或丙酮酸等有机物生成乙酸,但是在H2含量高的厌氧环境其可以利用乙酸作为碳源生长[34],而S6阶段高浓度乙酸残留(图2 (d))和相对高H2含量(DesulfovibrioSyntrophobacterSmithella等SRB的代谢产氢)的环境有利于其增殖。

    本研究表明对于含BYD的废水采用厌氧UASB处理时,厌氧接种污泥最好采用复配污泥;对于含有BYD同时COD和SO42−含量较高的废水(例如BDO生产过程产生的脱离子废液),厌氧UASB工艺可考虑利用硫酸盐还原提升废水的有机质去除效果,但是需要考虑游离硫化氢抑制问题:高强度硫酸盐还原,会产生大量硫化物,同时生成大量游离硫化氢,其会进入细胞,对产甲烷古菌和SRB产生抑制[23, 37],从而导致厌氧有机物去除效率下降(图2)。为了防止游离硫化氢的抑制,一方面可以通过稀释,降低进水硫酸盐质量浓度,比如HU等[23]研究发现在COD/SO42− =1的情况下,降低进水SO42−质量浓度至3 000 mg·L−1,可以保证80%的SO42−被还原去除;另一方面李健等[38]针对UASB反应器,设计出水循环系统和硫化物吹脱塔,即厌氧出水通过泵打入吹脱塔,吹脱塔中布置曝气装置,利用空气曝气将废水中硫化物氧化为硫单质从而降低废水中游离硫化氢含量,吹脱后液体通过泵打回到进水端,与进水混合后进入厌氧塔,从而缓解塔内游离硫化氢的抑制。利用上述措施,李健等[38]实现了高有机硫、高COD制药废水的稳定厌氧处理。最后,高质量浓度BYD本身可以络合金属离子,硫酸盐还原产生的硫化物也可以沉淀金属离子,因此通过硫酸盐还原处理高含BYD废水时,需要注意补加更多的微量元素。

    1)单纯的厌氧产甲烷体系中BYD的降解较慢,活性污泥和厌氧颗粒污泥复配及添加SO42−均可以提升厌氧生化对BYD的降解速率。

    2)高质量浓度BYD会络合过多铁、钴、镍等微量金属元素,导致产甲烷古菌被抑制,厌氧系统VFAs显著累积,通过补加微量元素的方式可以解除抑制。

    3)随着进水COD/SO42−降低,硫酸盐还原逐渐替代甲烷代谢成为主要的厌氧代谢途径,同时BYD的厌氧降解率也逐渐升高;在进水COD/SO42−为1时BYD的降解率达到21.92%,完全氧化型硫酸盐还原菌Desulforhabdus成为优势菌属,但此时因为游离硫化氢大量产生,同时抑制了产甲烷古菌和硫酸盐还原菌,使得厌氧体系乙酸大量累积,即使停止进水厌氧系统在短时间内也很难恢复。

    4)后续研究需要进一步考察不同质量浓度BYD对厌氧微生物群落的影响,并设计实验评估低COD/SO42−情况下,进水硫酸盐质量浓度对硫酸盐还原降解BYD的影响。此外,还需考察非生物转化途径(如吸附作用)对BYD在厌氧生化系统去除的贡献。

  • 图 1  发酵装置结构

    Figure 1.  Structural diagram of digestion equipment

    图 2  TVFAs、乙酸、正丁酸、丙酸和异丁酸的质量浓度变化

    Figure 2.  Variations of concentrations of TVFAs, acetic acids, butyrate acids, propionic acids and isobutyrate acids during the experiment

    图 3  累积产气量、甲烷含量和累积VS沼气产率的变化

    Figure 3.  Variations of cumulative biogas production, CH4 percentage and accumulative biogas yield per VS during SS-AD

    图 4  厌氧干发酵体系的pH和SCOD的变化

    Figure 4.  Variations of pH and SCOD during SS-AD

    图 5  厌氧干发酵过程中TAN和FAN质量浓度变化

    Figure 5.  Variations of TAN and FAN in SS-AD

    表 1  底物和接种物特征

    Table 1.  Characteristics of substrates and inoculum

    供试原料TS/%VS/%C/NpH
    猪粪26.0182.8311.56±0.377.94
    玉米秸秆88.8590.1858.96±0.82
    接种物13.6958.468.23
    供试原料TS/%VS/%C/NpH
    猪粪26.0182.8311.56±0.377.94
    玉米秸秆88.8590.1858.96±0.82
    接种物13.6958.468.23
    下载: 导出CSV

    表 2  实验设计

    Table 2.  Experimental design

    实验组底物猪粪与玉米秸秆比值底物与接种物比值接种方式
    P-C猪粪3∶1混合接种
    P-CL猪粪3∶1非混合接种
    P-M猪粪+玉米秸秆1∶13∶1混合接种
    P-ML猪粪+玉米秸秆1∶13∶1非混合接种
    实验组底物猪粪与玉米秸秆比值底物与接种物比值接种方式
    P-C猪粪3∶1混合接种
    P-CL猪粪3∶1非混合接种
    P-M猪粪+玉米秸秆1∶13∶1混合接种
    P-ML猪粪+玉米秸秆1∶13∶1非混合接种
    下载: 导出CSV

    表 3  修正的Gompertz方程参数

    Table 3.  Parameters of modified Gompertz model

    实验组P/(mL·g−1)Rmax/(mL·(g·d)−1)λ/dR2
    P-C52.60.9818.510.994
    P-CL150.24.8412.430.997
    P-M125.93.6316.480.995
    P-ML163.86.2410.620.999
    实验组P/(mL·g−1)Rmax/(mL·(g·d)−1)λ/dR2
    P-C52.60.9818.510.994
    P-CL150.24.8412.430.997
    P-M125.93.6316.480.995
    P-ML163.86.2410.620.999
    下载: 导出CSV
  • [1] 耿维, 胡林, 崔建宇, 等. 中国区域畜禽粪便能源潜力及总量控制研究[J]. 农业工程学报, 2013, 29(1): 171-179.
    [2] 于佳动, 赵立欣, 冯晶, 等. 序批式玉米秸秆牛粪混合厌氧干发酵产甲烷工艺优化研究[J]. 农业工程学报, 2018, 34(S1): 86-92.
    [3] BROWN D, SHI J, LI Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production[J]. Bioresource Technology, 2012, 124(11): 379-386.
    [4] FAGBOHUNGBE M O, DODD I C, HERBERT B M J, et al. High solid anaerobic digestion: Operational challenges and possibilities[J]. Environmental Technology and Innovation, 2015, 4: 268-284. doi: 10.1016/j.eti.2015.09.003
    [5] 齐利格娃, 高文萱, 杜连柱, 等. 粪草比对猪粪与稻草干发酵产沼气及古菌群落的影响[J]. 农业工程学报, 2018, 34(23): 232-238. doi: 10.11975/j.issn.1002-6819.2018.23.030
    [6] 刘春软, 童巧, 汪晶晶, 等. 不同添加剂对猪粪厌氧发酵的影响[J]. 中国沼气, 2018, 36(5): 30-35. doi: 10.3969/j.issn.1000-1166.2018.05.006
    [7] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [8] 胡荣笃. 用乙酸计量各种脂肪酸时的换算方法[J]. 中国沼气, 1995, 13(2): 46-47.
    [9] 马琳. 快速消解分光光度法测量CODCr与传统方法的对比实验[J]. 现代仪器, 2010, 16(4): 62-65.
    [10] KIM D H, OH S E. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions[J]. Waste Management, 2011, 31(9): 1943-1948.
    [11] ZHANG W Q, LANG Q Q, WU S B. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China[J]. Bioresource Technology, 2014, 156: 63-69. doi: 10.1016/j.biortech.2014.01.013
    [12] LI D W, ZHOU T, CHEN L. Using porphyritic andesite as a new additive for improving hydrolysis and acidogenesis of solid organic wastes[J]. Bioresource Technology, 2009, 100(23): 5594-5599. doi: 10.1016/j.biortech.2009.06.005
    [13] WANG Y, ZHANG Y, WANG J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass Bioenergy, 2009, 33(5): 848-853. doi: 10.1016/j.biombioe.2009.01.007
    [14] YU J, ZHAO Y, ZHANG H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2016, 59: 487-497.
    [15] WANG Z J, XU F Q, LI Y B. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover[J]. Bioresource Technology, 2013, 144: 281-287. doi: 10.1016/j.biortech.2013.06.106
    [16] 温博婷. 木质纤维素原料的酶解糖化及厌氧发酵转化机理研究[D]. 北京: 中国农业大学, 2015.
    [17] 陈兴春, 郑颖, 刘宏波, 等. 基于pH调控的城市污泥厌氧发酵产酸小试研究[J]. 环境科学学报, 2015, 35(4): 1067-1073.
    [18] 宋香育, 张克强, 房芳, 等. 工艺措施对猪粪秸秆混合厌氧干发酵产气性能的影响[J]. 农业工程学报, 2017, 33(11): 233-239. doi: 10.11975/j.issn.1002-6819.2017.11.030
    [19] CAI Y, WANG J, ZHAO Y, et al. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion[J]. Water Research, 2018, 140: 335-343. doi: 10.1016/j.watres.2018.04.047
    [20] 田梦, 刘晓玲, 李十中, 等. 香蕉秸秆与牲畜粪便固体联合厌氧发酵产沼气的特性[J]. 农业工程学报, 2013, 29(7): 177-184.
    [21] 李丹妮, 张克强, 梁军锋, 等. 三种添加剂对猪粪厌氧干发酵的影响[J]. 农业环境科学学报, 2019, 38(8): 1777-1785. doi: 10.11654/jaes.2019-0587
    [22] 刘战广, 朱洪光, 王彪, 等. 粪草比对干式厌氧发酵产沼气效果的影响[J]. 农业工程学报, 2009, 25(4): 196-200.
    [23] 孔德望. 猪粪厌氧干发酵产气性能与微生物群落结构研究[D]. 沈阳: 沈阳农业大学, 2018.
    [24] 陈闯, 邓良伟, 信欣, 等. 上推流厌氧反应器连续干发酵猪粪产沼气实验研究[J]. 环境科学, 2012, 33(3): 1033-1040.
    [25] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057
    [26] HANSEN K, ANGELIDAKI I, AHRING B. Anaerobic digestion of swine manure: Inhibition by ammonia[J]. Water Research, 1998, 32(1): 5-12. doi: 10.1016/S0043-1354(97)00201-7
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 10.5 %DOWNLOAD: 10.5 %HTML全文: 83.5 %HTML全文: 83.5 %摘要: 6.0 %摘要: 6.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %XX: 0.4 %XX: 0.4 %其他XXHighcharts.com
图( 5) 表( 3)
计量
  • 文章访问数:  3778
  • HTML全文浏览数:  3778
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-23
  • 录用日期:  2020-08-03
  • 刊出日期:  2021-01-10
李丹妮, 张克强, 孔德望, 梁军锋, 杜连柱. 非混合接种对猪粪厌氧干发酵产气特性的影响[J]. 环境工程学报, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
引用本文: 李丹妮, 张克强, 孔德望, 梁军锋, 杜连柱. 非混合接种对猪粪厌氧干发酵产气特性的影响[J]. 环境工程学报, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
LI Danni, ZHANG Keqiang, KONG Dewang, LIANG Junfeng, DU Lianzhu. Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150
Citation: LI Danni, ZHANG Keqiang, KONG Dewang, LIANG Junfeng, DU Lianzhu. Effects of non-mixed seeding on methane production characteristics of the batch dry anaerobic digestion of pig manure[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 279-288. doi: 10.12030/j.cjee.202003150

非混合接种对猪粪厌氧干发酵产气特性的影响

    通讯作者: 杜连柱(1979—),男,博士,研究员。研究方向:废弃物资源化利用。E-mail:dulianzhu99@163.com
    作者简介: 李丹妮(1996—),女,硕士研究生。研究方向:废弃物资源化利用。E-mail:18788857190@163.com
  • 1. 农业农村部环境保护科研监测所,天津 300191
  • 2. 杭州能源环境工程有限公司,杭州 310020
基金项目:
国家重点研发计划项目(2016YFD0501407);中国农业科学院协同创新任务(CAAS-XTCX2016015);中央级公益性科研院所基本科研业务费专项资金资助项目(szjj-2019-ljf)

摘要: 为达到缓解猪粪厌氧干发酵时有机酸的积累并能够同时提高产气性能的目的,采用小试批式实验,在中温(37 ℃)、总固体(TS)为20%的条件下研究了猪粪接种物全混合发酵、猪粪非混合接种发酵、猪粪玉米秸秆与接种物全混合发酵及猪粪玉米秸秆混合原料非混合接种发酵这4种方式对发酵体系的有机酸积累及产甲烷特性的影响。结果表明,猪粪接种物全混合发酵和猪粪玉米秸秆与接种物全混合发酵的总有机酸(TVFAs)质量浓度在发酵结束时分别为15.2和3.6 mg·g−1,较对应底物的非混合接种发酵分别提高了6.3倍和5.0倍。在2种非混合接种发酵体系中,TVFAs质量浓度在21 d后迅速降低。其中,猪粪玉米秸秆混合原料非混合接种的TVFAs下降幅度更大,其第30天的TVFAs质量浓度低于1.5 mg·g−1。猪粪玉米秸秆混合原料非混合接种厌氧发酵产气效果最佳,累积VS产甲烷量达到148.2 mL·g−1。猪粪非混合接种发酵沼气中甲烷含量最高,达到75.1%。修正的Gompertz模型拟合结果显示,猪粪玉米秸秆混合原料非混合接种发酵和猪粪非混合接种发酵的迟滞期分别为10.6和12.4 d,较对应底物的混合接种发酵分别缩短了5.9和6.1 d;最大VS产甲烷速率分别提高了1.7倍和4.9倍,达到6.2和4.8 mL·(g·d)−1。非混合接种能够缓解猪粪厌氧干发酵的酸抑制并同时提高其甲烷产率。

English Abstract

  • 我国畜禽养殖业发展迅速,规模化养猪场的比例逐年增加,但畜禽粪便的资源化利用率较低,从而导致了较严重的环境污染问题,畜禽粪便已成为农业面源污染的主要来源[1]。干清粪收集工艺大大提高了粪便含固率,为开展农业废弃物厌氧干发酵技术创造了有利条件;同时,通过干发酵可获得丰富的清洁能源沼气,有利于我国农业的绿色可持续发展[2]

    厌氧干发酵处理能力大、用水量小、容积产气率高。而且,发酵后的沼渣含水率低,能够直接生产有机肥,有助于构建种养循环体系[3]。但是,由于农业废弃物组分结构复杂、难降解转化,易产生酸积累,会产生启动慢、传质效率低和发酵过程稳定性差等问题[4]。为有效缓解厌氧干发酵的酸抑制、提高其甲烷产率,相关学者开展了大量的研究工作。如齐利格娃等[5]研究了猪粪与稻草的不同原料配比对厌氧发酵性能的影响,当猪粪与稻草配比为2∶1时,丙酸含量较纯猪粪组减少了71.8%,累积VS甲烷产率较纯猪粪组相比提高了13.0%。于佳动等[2]研究了喷淋频率对玉米秸秆和牛粪的混合厌氧干发酵影响,当接种量为30%时,喷淋频率间隔8 h的有机酸浓度相较于间隔2 h增加了46.3%,累积甲烷产量也相应降低。刘春软等[6]研究了不同添加剂对猪粪厌氧干发酵特性的影响,添加2.5%的生物炭处理组的总有机酸(TVFAs)峰值较纯猪粪组减少了4.8%,平均甲烷含量提高了4.4%。

    目前,关于厌氧干发酵酸积累的研究主要集中在发酵工艺改进和影响因素筛选及优化等方面,但由于喷淋和外源添加剂在实际应用中成本高且不易开展规模化应用,因此对避免和缓解干发酵中酸抑制仍需开展更深入的研究。本研究以猪粪为主要发酵底物,通过中温批式实验研究底物非混合接种对厌氧干发酵过程有机酸积累和产甲烷特性的影响,并采用修正的Gompertz动力学模型模拟产气过程,进而评估非混合接种对猪粪厌氧干发酵的促进作用。

  • 实验用猪粪为天津市西青区某养殖场的鲜猪粪,取回后储存于(4±1) ℃的冰箱。玉米秸秆收获后进行粉碎,粒径为1.0~3.0 mm,存放于室温阴凉通风处。接种物取自实验室自产的猪粪厌氧干发酵残余物,已不产气。底物与接种物的理化指标见表1。实验装置为自制批式厌氧干发酵反应器(见图1)为有机玻璃材质,内径90 mm,高170 mm,总容积为1.1 L。

  • 按不同的发酵底物和接种方式设4组实验,每组实验3个重复。具体实验设计见表2。其中,非混合接种(P-CL组和P-ML组)实验组中,采取的进料方式为分层进料:首先分别将接种物和底物按质量均分3份,然后取1份接种物平铺至反应器底部,再将1份底物均匀铺至接种物层上方(不搅拌),重复上述操作共3次,最后形成接种物位于底物下方共3层。各反应器的总进料量为600 g(TS=20%),接种比为25%(按VS计),装料后将反应器加盖密封,连接3 L集气袋,置于(37±1) ℃恒温水浴锅中发酵。

    根据发酵产气量,每1~3 d测量沼气产量,并测定气体组分。每3 d从发酵罐侧面取样口采集发酵固体样品(其中,非混合接种的实验组从发酵罐侧面上层和下层取样口进行取样后,再将其混合均匀),测量pH、溶解性化学需氧量(SCOD)、挥发性有机酸(VFAs)和氨氮的理化指标。

  • 总固体含量(TS)、挥发性固体含量(VS)、总氨氮(TAN)和pH采用《水和废水监测分析方法》[7]分析测定;C、N含量采用Vario EL cube元素分析仪测定。

    总有机酸(TVFAs)测定:固体样品经去离子水稀释10倍(质量计)后加稀硫酸调节pH<3.0,离心10 min后取上清液与丙酮按比例混合,混合液经0.45 µm滤膜过滤后采用Thermo-trace-1300气相色谱仪测定VFAs(乙酸、丙酸、丁酸和异丁酸)质量浓度,气相色谱配毛细管柱(TR-FFAP,30 m×0.53 mm×1 µm),氦气为载气(流速8.00 mL·min−1),柱箱温度为90 ℃,进样口、FID检测器温度分别为200和220 ℃。VFAs总质量浓度为各种VFA浓度之和(以乙酸计)[8]

    SCOD采用哈希快速消解方法[9]测定。游离氨(FAN)的质量浓度[10]通过公式(1)计算。

    式中:CFAN为游离氨质量浓度,mg·g−1CTAN为总氨氮质量浓度,mg·g−1t为厌氧发酵温度,℃;pH为发酵固体样品的pH。

    沼气产量用湿式气体流量计配蠕动泵进行测量,沼气中CH4和CO2体积分数采用Thermo-trace-1300气相色谱仪测定(Porapak Q色谱柱(2 m×φ2 mm)、氦气为载气(压力75 kPa)、柱箱温度40 ℃、进样口和热导检测器(TCD)温度均为200 ℃)。

  • 采用修正的Gompertz模型模拟实验过程中的累积VS产甲烷量[11]。模型方程见式(2)。

    式中:Pt时刻对应的累积VS产甲烷量,mL·g−1Pmax为最终累积VS甲烷产率,mL·g−1Rmax为最大VS产甲烷速率,mL·(g·d)−1λ为迟滞期,d;t为时间,d;e为exp(1)=2.7183。根据模型拟合结果推算发酵过程中最大VS产甲烷速率Rmax和迟滞期λ

  • 图2为各处理发酵过程中TVFAs、乙酸、正丁酸、丙酸和异丁酸的质量浓度变化曲线。由图2(a)可知,发酵的前7 d各处理组的TVFAs质量浓度不断上升。这是因为,在反应初期,有机物被水解产酸细菌分解成VFAs,由于水解产酸细菌的生长速度快于产甲烷菌,使得产生的VFAs不能被及时分解,各组的TVFAs质量浓度不断上升[12],第7天达到第一个质量浓度峰值。其中,P-C组达到30.1 mg·g−1,较P-M组、P-ML组和P-CL组分别高出了11.0%、18.1%和22.8%。P-C组在第37天时的TVFAs质量浓度达到第2个峰值24.6 mg·g−1,其后质量浓度明显降低并在46 d后趋于平稳,至结束时(第63天),TVFAs质量浓度仍维持在15.2 mg·g−1附近。P-M组的TVFAs在30 d后呈现明显下降趋势,在发酵第40天时的TVFAs质量浓度为9.6 mg·g−1,之后缓慢降低,至实验结束时为3.6 mg·g−1。P-CL组和P-ML组的TVFAs质量浓度则在21 d后急剧下降。其中,P-CL组在25 d后又经历了1个先升高再下降的过程,实验结束时为2.4 mg·g−1,略低于P-M组。可以看出,P-C组和P-CL组在20~25 d后均有1个明显的TVFAs质量浓度先升高后降低的过程;而P-M组和P-ML组此过程不明显或者不存在。其主要原因是,猪粪中不同有机质组分的降解难易程度不同,当单独猪粪为发酵底物时,需要较长时间才能充分将有机酸消耗利用;而且,当玉米秸秆与猪粪两种底物发酵,体系为微生物提供更均衡的营养,发酵前期加快有机物水解酸化进程,从而减少发酵体系内有机酸的积累。P-ML组TVFAs质量浓度在第25天时降低至2.6 mg·g−1,并在33 d后稳定在0.5~0.8 mg·g−1,实验结束时为0.7 mg·g−1,较P-C组、P-M组和P-CL组分别减少了95.3%、80.2%和70.7%。TVFAs质量浓度降低主要是因为随着发酵的进行,产甲烷菌的适应性逐渐增强,能及时将产生的VFA分解转化为甲烷,但不同处理组之间TVFAs质量浓度发生明显下降的时间及降低幅度差别明显。与混合接种(P-C组与P-M组)相比,非混合接种(P-CL与P-ML)具有更低的VFAs质量浓度,且出现明显下降的时间提前。

    图2(b)为发酵过程中乙酸质量浓度的变化曲线。可以看出,P-CL组在发酵的第40天出现第2个明显的乙酸峰值,达到4.6 mg·g−1,相较于P-C组和P-M 组分别降低了42.6%和41.2%。P-ML组的乙酸质量浓度只有1个峰值,在21 d后,TVFAs中乙酸含量不断增加,并在第33天达到76.3%后小幅度波动。

    图2(c)中,正丁酸质量浓度整体呈先升高后降低的变化趋势,在发酵结束时,各组的正丁酸基本消耗殆尽。在发酵的第7天,各组表现出1个明显的峰值,P-CL组和P-ML组分别为6.7和8.1 mg·g−1,较P-C组(8.6 mg·g−1)和P-M组(9.2 mg·g−1)分别降低了22.0%和12.1%,且在第21天时正丁酸质量浓度减少到1.0 mg·g−1以下。以上结果表明,非混合接种能够促进乙酸和正丁酸的分解转化,降低质量浓度,有利于产甲烷发酵,而且猪粪玉米秸秆混合物非混合接种(P-ML组)效果较明显。这是由于非混合接种方式使局部产甲烷微生物占主导优势,可迅速消耗发酵体系内产生的有机酸。同时,以玉米秸秆和猪粪为底物进行非混合厌氧发酵时,一方面两种底物平衡了发酵体系的C/N比;另一方面玉米秸秆疏松多孔的结构,有利于气体的释放,提高了微生物对原料的利用效率,从而有效促进该发酵体系内的有机酸分解转化。

    图2(d)中可以看出,除P-C组的丙酸质量浓度呈升高的趋势外,其余实验组均呈先升高后降低的总体趋势。在发酵的第21天,P-CL组和P-ML组表现出1个明显的丙酸质量浓度峰值,分别为8.6和11.4 mg·g−1;随后,P-CL组和P-ML组的丙酸含量和占比不断减少,在发酵结束时丙酸基本被完全消耗。混合接种的实验组(P-C组和P-M组)在前49 d丙酸质量浓度增加。其中,P-M组在30 d后TVFAs中丙酸含量超过P-C组,在第49天后丙酸质量浓度快速下降,发酵结束时为2.5 mg·g−1,较P-C组减少了70.1%。这表明,在混合接种发酵组中,底物为猪粪玉米秸秆混合发酵组(P-M组)的乙酸消耗较快,使TVFAs中丙酸含量不断提高。WANG等[13]研究不同VFAs对厌氧发酵的影响时发现,当丙酸质量浓度达900 mg·L−1时,发酵体系内的产甲烷微生物受到明显抑制。在本实验中,非混合接种发酵组的甲烷产量和甲烷体积分数均未出现明显的下降趋势(图3)。有研究[14]指出,丙酸积累不利于甲烷生产,当体系以乙酸和丁酸为主要有机酸时,有利于提高体系产气量。本实验中的P-C组随着发酵的进行,丙酸质量浓度不断增加,发酵结束时的丙酸质量浓度积累至8.3 mg·g−1,该浓度远超过相关研究[13]的抑制浓度(900 mg·L−1)。P-C组丙酸质量浓度积累形成了酸抑制现象,从而影响了该组的产气效果,这也与图3(a)的结果一致。各组异丁酸的质量浓度变化(图2(e))基本一致,呈先升高后减少的趋势。第25天时,P-C组、P-M组、P-CL组和P-ML组异丁酸质量浓度分别为2.2、1.1、0.3和0.1 mg·g−1。其中,P-CL组和P-ML组分别在第56天和第37天将发酵体系内的异丁酸全部转化完,这说明非混合接种发酵体系更容易利用异丁酸。

  • 图4为实验过程中各处理组的pH和SCOD随时间变化曲线。由图4(a)可以看出,各发酵组pH大小基本呈现P-CL组>P-ML组>P-C组>P-M组的规律,其中非混合接种高于混合接种。在发酵的前30 d,P-M组的pH总体呈下降趋势。这可能是因为,发酵原料中玉米秸秆的纤维素和半纤维素的水解产酸速率较快[15],但产甲烷菌消耗VFAs的速率相对较低导致了有机酸不断积累。同样,底物原料含有玉米秸秆的P-ML组的pH则呈缓慢升高趋势。这是因为,非混合接种改变了有机酸和微生物的接触方式,使底物层和接种物层附近区域的F/I比降低、产甲烷微生物发挥出群体优势,这表明非混合接种能够加快有机酸转化甲烷效率。P-M组和P-ML组与P-C组和P-CL组相比,具有较低的TVFAs质量浓度(图2(a)),但pH仍低于P-C组和P-CL组。这主要是因为,P-M组和P-ML组处理中添加了玉米秸秆,降低了体系中TAN质量浓度(图5),并导致该发酵体系的缓冲能力有所下降。P-ML组和P-CL组具有相对较高的pH,这表明非混合接种的发酵方式可以促进产甲烷微生物对VFAs的消耗,进而避免VFAs积累。

    SCOD反映了发酵样品中可溶性有机物的含量,这是衡量酸化过程中,水解酸化能力的重要指标,稳定的SCOD可为微生物厌氧发酵提供稳定的物质基础[16-17]。由图4(b)可以看出,4个实验组的SCOD呈先升高后降低再升高最后降低趋于稳定的总体变化趋势,且与TVFAs(图2(a))变化规律相似。在4个发酵组中,猪粪接种物全混合发酵组(P-C组)的SCOD值最高,且变化幅度最大,在发酵的第7天和第30天,SCOD值分别达到36.6和52.2 mg·g−1这2个峰值。发酵结束时,P-C组的SCOD值为33.3 mg·g−1,这分别是P-CL组、P-M组和P-ML组的1.5、1.3和2.3倍。P-CL组和P-ML组的第2个SCOD峰值分别为34.4和26.3 mg·g−1,相较于P-C组和P-M组分别降低了34.1%和38.3%。P-CL组和P-ML组在发酵10 d后的SCOD相对更稳定,且明显低于P-C组和P-M组,其中P-ML组的SCOD值最小。这说明,非混合接种能够维持发酵体系SCOD的稳定同时促进发酵体系的水解,提高甲烷产率。其中,猪粪玉米秸秆非混合接种发酵组更能促进体系内的大部分的可溶性有机物被微生物水解利用转化为甲烷。

  • 图3为各处理组发酵过程中累积产气量、甲烷含量和累积VS沼气产率。结合图3(a)表3可以看出,各实验组经历了11~19 d的迟滞期后进入快速产气阶段,然后产气才渐趋于平稳。发酵结束时,P-CL组和P-ML组的累积产气量分别为18.9和22.9 L,较相同底物全混合接种的发酵组分别提高了164.9%和25.8%。由前期研究[18]可知,猪粪玉米秸秆混合原料非混合接种未出现迟滞期。本实验非混合接种发酵组均出现迟滞期的主要原因可能是,接种物在发酵实验前未驯化培养,因此产甲烷菌发酵前期活性较低,产气量较少。据图3(a)显示,在10~33 d内,P-CL组和P-C组的产气速率较其余组减慢,结合图4(b)可知,P-CL组和P-C组的SCOD质量浓度在发酵的10~40 d和10~37 d分别增加了30.5%和54.8%,而其余发酵组的SCOD质量浓度是不断降低的。这说明,在底物为猪粪的发酵组中,有机物的水解酸化可正常进行,但对氨氮浓度较为敏感的产甲烷菌活性可能受到抑制,从而导致产气速率减慢。综合图3(a)图3(c)可以看出,P-CL组较P-M组相比,产气效果较好,集中在发酵前期(前33 d)且发酵启动最迅速;而在后期P-CL组的日产气速率逐渐减缓,在发酵结束时,2组的累积VS沼气产率差异不明显。其可能的原因是,发酵体系内的微生物在前期更容易利用猪粪中的有机物进行繁殖,从而提高累积产气量。随着发酵的进行,猪粪玉米秸秆混合原料的P-M组体系内碳源和氮源充足,产气未受影响,P-CL组则出现氮源过多,氨氮含量升高进而对产甲烷菌活性有抑制作用,这也与图5(a)的结果一致。

    沼气中甲烷含量能够反映厌氧发酵体系碳素的转化效率[19]。尽管在不同接种方式下,各实验组在产气高峰阶段的甲烷含量差异不大,均在70%左右,但各组从发酵启动阶段到沼气中甲烷含量相对稳定(70%)所经历的时间有明显的差别,这段时间可以反映底物被产甲烷菌群利用的难易程度。在非混合接种实验组(P-CL组和P-ML组)中,甲烷浓度在13~16 d达到峰值(75.1%和71.3%),较P-C组和P-M组有明显的提前,这表明非混合接种发酵能够促进微生物可利用物质的甲烷化,与图4(b)的结果一致。

    由各处理累积VS沼气产率的结果(图3(c))可知,P-ML组和P-CL组的累积VS甲烷产率分别为148.2和140.4 mL·g−1,分别是P-M组(121.5 mL·g−1)和 P-C组(47.5 mL·g−1)的1.2倍和3.0倍,其值略高于猪粪与香蕉秸秆混合厌氧干发酵[20](128.0 mL·g−1)和添加20%生物炭的猪粪厌氧干发酵[21](126.2 mL·g−1)的累积VS甲烷产率。为更好地比较不同接种方式对缓解厌氧干发酵酸积累的作用,本研究的接种比仅为25%,低于齐利格娃等[5]研究中的40%,从而导致P-C组的累积VS甲烷产率相对较低(188.8 mL·g−1)。以上结果表明,非混合接种对猪粪单一原料和猪粪玉米秸秆混合原料发酵均具有明显的产甲烷促进作用。其原因可能是,底物和接种物分层进料,使主要的产甲烷作用不在VFAs积累的区域进行,避免了有机酸对产甲烷菌的抑制,从而提高了甲烷产率[20]。同时可知,混合原料发酵的产甲烷效果优于猪粪单独发酵,这一方面是因为混合原料平衡了发酵底物的碳氮比;另一方面是因为猪粪玉米秸秆混合增加介质传导[22],进而提高产气效率。

    用修正的Gompertz模型对干发酵累积VS甲烷产率进行了拟合,结果表明(表3),不同处理的拟合曲线呈现较高的拟合度。猪粪玉米秸秆混合原料非混合接种发酵组(P-ML组)的迟滞期(λ=10.6)最短,猪粪非混合接种发酵组(P-CL组)次之(λ=12.4),而猪粪接种物全混合发酵(P-C)的迟滞期最长(λ=18.5)。其中,非混合接种实验组(P-CL组和P-ML组)迟滞期的时长较其余组减少了24.6%~42.6%。在发酵结束的第62天,各实验组中只有P-CL组和P-ML组已进入产气平稳阶段。这表明,非混合接种方式不仅可实现猪粪厌氧干发酵的快速启动,还能够减少有效发酵时间。在产甲烷速率方面,P-C组最大VS产甲烷速率为0.98 mL·g−1,其值为各处理组最小。P-M组、P-CL组和P-ML组的最大VS产甲烷速率分别为3.6、4.8和6.2 mL·g−1,是P-C组的2.7、3.9和5.4倍。由此可见,非混合接种能够有效缩短迟滞期、提高产甲烷速率。

  • 氨氮是厌氧发酵需要关注的重要指标之一,质量浓度过高会抑制微生物的产甲烷作用。图5为发酵过程中TAN和FAN的质量浓度变化曲线。据图5(a)显示,随着发酵的进行,TAN质量浓度呈逐渐上升的趋势[23],但不同实验组的TAN质量浓度差异明显。在发酵7 d后,以猪粪玉米秸秆为原料的P-M组和P-ML组TAN质量浓度范围在2.1~3.7 mg·g−1内波动,总体低于猪粪单一原料的P-C和P-CL组(2.8~4.4 mg·g−1)。P-M组与P-ML组、P-C组与P-CL组因为发酵原料相同,TAN质量浓度差别不明显,但P-ML组和P-CL组的累积VS甲烷产率较P-M组和P-C组却分别增加了22.0%(121.5 mL·g−1、148.2 mL·g−1)和195.6%(47.5 mL·g−1、140.4 mL·g−1),这与前期研究[18]结果一致。陈闯等[24]的猪粪连续干式发酵的实验结果表明,当氨氮浓度从2 250 mg·L−1(TS=20%)增加到3 800 mg·L−1(TS=35%),VS平均产气率减少了74.2%,从660.0 mL·g−1下降到170.0 mL·g−1。在本研究中,P-ML组和P-CL组的TAN质量浓度在第56天分别达到4.4和3.1 mg·g−1后,累积VS甲烷产率依然明显增加。这可能是因为,一定范围内的TAN质量浓度增加,有利于发酵体系的缓冲能力提高,加速中间产物如有机酸的转化,为产甲烷菌提供生长繁殖所需的营养物质[25]。以上结果表明,影响产气性能的主要原因是有机酸的积累而并非高质量浓度的氨氮的抑制作用;同时,非混合接种有助于提高发酵体系对氨氮的耐受浓度。

    图5(b)中显示,FAN质量浓度由于TAN质量浓度及pH的不同有较大的差异,但各组的总体变化趋势是逐渐升高。反应开始后,除P-M组外,其余组的FAN质量浓度随pH的增大迅速增加。HANSEN等[26]认为,当FAN质量浓度超过1 100 mg·L−1时,产甲烷菌的活性会受到抑制进而影响产气效率。在本研究中,P-CL组和P-C组在第30天和第43天时FAN质量浓度分别为1.0和1.1 mg·g−1,随后呈升高趋势,此阶段的FAN质量浓度均接近或超过已有研究[26]中报道的抑制浓度(1 100 mg·L−1)。发酵结束时,P-CL组的FAN质量浓度1.5 mg·g−1仍高于抑制浓度,是P-C组的1.3倍,但累积产气量是P-C组的2.6倍。这表明,非混合接种发酵可有效减轻高氨氮对产甲烷微生物的抑制作用,从而提高产气量。

  • 1)猪粪玉米秸秆混合原料非混合接种组的TVFAs质量浓度在实验结束时为0.7 mg·g−1,较其余组减少了70.7%~95.3%,这表明非混合接种的方式可有效降低有机酸的积累浓度。

    2)非混合接种发酵中,猪粪玉米秸秆混合原料非混合接种产气效果最佳,累积VS甲烷产率达148.16 mL·g−1。猪粪非混合接种发酵的沼气中甲烷含量最高为75.1%。

    3)猪粪玉米秸秆混合原料非混合接种组和猪粪非混合接种组的氨氮质量浓度在第56天分别达到4.4和3.1 mg·g−1时,产气未受明显抑制。这主要是因为底物与接种物非混合发酵有助于提高发酵体系对氨氮的耐受浓度。

    4)底物与接种物非混合发酵能够缓解有机酸积累、缩短厌氧发酵的启动时间、促进甲烷化过程,从而提高产气量。

参考文献 (26)

返回顶部

目录

/

返回文章
返回