[1] CHEN S Y. Occurrence characteristics and ecological risk assessment of heavy metals in sewage sludge[J]. IOP Conference Series: Earth and Environmental Science, 2019, 295: 052041. doi: 10.1088/1755-1315/295/5/052041
[2] 黄翔峰, 叶广宇, 穆天帅, 等. 污泥厌氧消化过程中重金属稳定性研究进展[J]. 环境化学, 2017, 36(9): 2005-2014.
[3] ZHU N M, QIANG L, GUO X J, et al. Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals[J]. Ecotoxicology and Environmental Safety, 2014, 102: 18-24. doi: 10.1016/j.ecoenv.2013.12.033
[4] LIU T T, LIU Z G, ZHENG Q F, et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresoure Technology, 2018, 247: 282-290. doi: 10.1016/j.biortech.2017.09.090
[5] ZHANG Q, ZHANG L, SANG W J, et al. Chemical speciation of heavy metals in excess sludge treatment by thermal hydrolysis and anaerobic digestion process[J]. Desalination and Water Treatment, 2015, 57(27): 12770-12776.
[6] BARBER W P F. Thermal hydrolysis for sewage treatment: A critical review[J]. Water Research, 2016, 104: 53-71. doi: 10.1016/j.watres.2016.07.069
[7] 于晓庆, 董滨, 何群彪, 等. 污水污泥和消化污泥热解过程中重金属迁移转化行为对比分析[J]. 净水技术, 2017, 36(12): 27-32.
[8] HUANG H J, YUAN X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresoure Technology, 2016, 200: 991-998. doi: 10.1016/j.biortech.2015.10.099
[9] ZHANG M, YANG C M, JING Y C, et al. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge[J]. Waste Management, 2016, 58: 316-323. doi: 10.1016/j.wasman.2016.09.040
[10] LENG L J, YUAN X Z, HUANG H J, et al. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge[J]. Bioresoure Technology, 2014, 167: 144-150. doi: 10.1016/j.biortech.2014.05.119
[11] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
[12] 刘亚纳, 郭旭明, 周鸣, 等. 洛阳城市污水处理厂污泥中重金属形态及潜在生态风险评价[J]. 环境工程学报, 2017, 11(2): 1217-1222.
[13] 杨伟光, 陈卫平, 杨阳, 等. 新疆某矿冶区周边土壤重金属生物有效性与生态风险评价[J]. 环境工程学报, 2019, 13(8): 1930-1939.
[14] 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1): 117-122.
[15] 李廷芳, 刘宝元. 北京地区土壤背景值图的编制[J]. 地理学报, 1989, 44(1): 11-21.
[16] 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461.
[17] DAI J Y, XU M Q, CHEN J P, et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere, 2007, 66(2): 353-361. doi: 10.1016/j.chemosphere.2006.04.072
[18] 章蕾, 李孟, 曹磊, 等. 城市污泥热水解-厌氧消化-Fenton处理工艺中重金属稳定性研究[J]. 武汉理工大学学报, 2014, 36(1): 99-101.
[19] DONG B, LIU X G, DAI L L, et al. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge[J]. Bioresoure Technology, 2013, 131: 152-158. doi: 10.1016/j.biortech.2012.12.112
[20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥泥质: GB 24188-2009[S]. 北京: 中国标准出版社, 2009.
[21] 中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置农用泥质: CJ/T 309-2009[S]. 北京: 中国标准出版社, 2009.
[22] 中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置林地用泥质: CJ/T 362-2011[S]. 北京: 中国标准出版社, 2011.
[23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥处置园林绿化用泥质: GB/T 23486-2009[S]. 北京: 中国标准出版社, 2009.
[24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准管理委员会. 城镇污水处理厂污泥处置土地改良用泥质: GB/T 24600-2009[S]. 北京: 中国标准出版社, 2009.
[25] 陈泾涛, 唐治, 耿宇聪, 等. 厌氧消化对污泥中重金属及病原微生物的影响研究[J]. 中国沼气, 2015, 33(3): 10-16.
[26] 高燕. 厌氧消化系统中污泥重金属形态转化及去除方法研究进展[J]. 北方环境, 2013, 25(8): 57-60.
[27] 孙雪萍, 王安亭, 李新豪, 等. 热水解法处理污泥过程中重金属的迁移规律[J]. 中国给水排水, 2010, 26(17): 66-68.
[28] WU H M, LI M, ZHANG L, et al. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis[J]. Water Science and Technology, 2016, 73(4): 890-898. doi: 10.2166/wst.2015.537
[29] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007, 16(5): 1551-1556.