-
草甘膦是一种非选择性的广谱除草剂,因其具有与土壤快速结合、不挥发、不易光解等特性[1],在全世界范围内被广泛应用。有研究[2-3]表明:每生产1 t草甘膦原药,要至少排放4倍的高浓度废水,其中的草甘膦含量约为0.9%,该废水可生化性差、治理难度大。当农田施加草甘膦以后,其通过介质迁移而进入到水体中。张石云等[4]在哈尼梯田采集水源水库及梯田汇水处水样,草甘膦检出率为100%;王静等[5]和陈界江等[6]分别在浙江省饮用水源、太湖及阳澄湖水源地水样中检测到少量草甘膦。MESNAGE等[7]的研究表明,即使浓度低于监管限值,商业制剂中的草甘膦也会对肝肾有致癌、致畸和致瘤作用。鉴于草甘膦在饮用水源地的高检出和潜在毒理效应,《生活饮用水卫生标准》(GB 5749-2006)中规定草甘膦浓度限值为0.7 mg L−1。因此,草甘膦的去除也成为近年的水处理领域的热点问题[1, 8]。
在草甘膦的去除技术中,吸附法[9-10]被证明是一种高效廉价的技术。草甘膦作为阴离子型有机磷化合物,带有正电荷的吸附材料可以通过静电吸附作用实现对其的高效吸附。2016年以来,DONG等[11]制备了以季铵基团(-N+(CH3)3)为核心的高正电荷水凝胶吸附剂:MGO-CH[12]、MCH-La[13]和载有La3+(ion)/La(OH)3-W/La(OH)3-EW的MCH,其与AR88、F−和
${\rm{PO}}_4^{3 - }$ 之间存在显著的静电吸附作用,但目前尚未使用此类水凝胶吸附剂对草甘膦进行吸附研究。近年来,环糊精作为聚合物的单体而受到关注[14-17],环糊精具有疏水性内腔和亲水性外表面的特定截锥形结构,可用于与各种具有适当大小和极性的分子相互作用形成可逆的主-客体包含物[15]。同时,环糊精内部和外部的高密度羟基可以通过各种官能团进行修饰,使环糊精具有额外的特殊性能[18]。以β-环糊精为单体制备的新型环糊精基聚合物(EA-CDP)[16]和两亲性高交联多孔环糊精聚合物(PBCD-B-D)[17]在有机污染物的吸附中发挥了环糊精包合作用及疏水性和氢键等其他作用,取得了良好的吸附效果,然而其对草甘膦的吸附性能尚需验证。
基于上述研究,本研究以阳离子化的β-环糊精为单体,通过自由基接枝共聚,制备了环氧丙基三甲基氯化铵-β-环糊精复合水凝胶(MGTA-CDCH),耦合季胺基团的正电荷特征与β-环糊精的氢键专属吸附作用,进行了草甘膦的吸附研究;通过静态吸附实验,评价了MGTA-CDCH对草甘膦的吸附效果、探讨其吸附特征,并分析相应的吸附机制,以期为草甘膦的高效去除提供技术支撑。
磁性环氧丙基三甲基氯化铵-β-环糊精复合水凝胶对草甘膦的吸附性能
Adsorption performance of magnetic glycidyl trimethyl ammonium chloride-β-cyclodextrin composite hydrogel toward glyphosate
-
摘要: 为有效去除水中的草甘膦,合成了一种磁性环氧丙基三甲基氯化铵-β-环糊精复合水凝胶(MGTA-CDCH),且对其进行了结构表征,探究了溶液初始pH、草甘膦浓度等对MGTA-CDCH吸附性能的影响。结果表明:在pH=3~10.5时,MGTA-CDCH的Zeta电位均能够保持在27 mV以上;MGTA-CDCH对草甘膦的吸附过程符合Sips等温线模型,饱和吸附量为179.2 mg·g−1,且在1 h内可达到饱和吸附容量的96.6%;由于草甘膦属于阴离子有机物,MGTA-CDCH中季胺基团和羟基基团可以与其发生静电和氢键作用,因此,溶液pH对吸附作用影响较大,pH=3~7为吸附的适用范围,此后,随着pH的升高,MGTA-CDCH对草甘膦的吸附量明显下降。此外,腐殖酸对MGTA-CDCH吸附草甘膦存在较为明显的抑制效果,但抑制效果随着腐殖酸浓度的升高而减弱;MGTA-CDCH在5次循环再生后仍能保持86%的吸附容量。上述研究结果表明,MGTA-CDCH在含草甘膦废水处理中具有潜在的应用价值。Abstract: In order to effectively remove glyphosate, a magnetic glycidyl trimethyl ammonium chloride-β-cyclodextrin composite hydrogel (MGTA-CDCH) was prepared. In combination of MGTA-CDCH characterization, the effects of initial pH, glyphosate concentration in water on the MGTA-CDCH adsorption performance were studied. The results showed that the zeta-potential of MGTA-CDCH maintained above 27 mV within pH range of 3.0~10.5. The adsorption process of glyphosate by MGTA-CDCH fitted the Sips model, and the corresponding saturated adsorption capacity was 179.2 mg·g−1, and the adsorption amount of glyphosate could reach 96.6% of this capacity within 1 h. As a type of anionic organic matter, the quaternary amine groups and the hydroxyl groups in MGTA-CDCH could attracted glyphosate through electrostatic interactions and hydrogen bonding, respectively, thus the solution pH had a significant effect on the adsorption of glyphosate on MGTA-CDCH, the feasible pH range was 3~7. Afterwards, the adsorption amount of glyphosate on MGTA-CDCH decreased drastically with the increase of pH. In addition, humic acid could inhibit the glyphosate adsorption on MGTA-CDCH, but the inhibitory effect weakened with the increase of humic acid concentration. After five regeneration-reuse cycles, its residual adsorption capacity still maintained 86% of fresh MGTA-CDCH. Above all, this study indicates that MGTA-CDCH has potential application in glyphosate wastewater treatment.
-
表 1 相关试剂的主要参数
Table 1. Main structural parameters for the reagents
试剂名称 分子式 相对分子质量 草甘膦 C3H8NO5P 169 β-环糊精 C42H70O35 1 134 2, 3-环氧丙基三甲基氯化铵 C6H14ClNO 151.6 纳米Fe3O4 Fe3O4 231.5 表 2 MGTA-CDCH与其他相关吸附剂对草甘膦吸附量的对比
Table 2. Comparison of the adsorption capacities of different adsorbents toward glyphosate
表 3 MGTA-CDCH对草甘膦的Langmuir、Freundlich和Sips等温线拟合数据
Table 3. Langmuir, Freundlich and Sips adsorption isotherm parameters for glyphosate adsorption onto MGTA-CDCH
Langmuir Freundlich Sips qe kL $R_{\rm{L}}^2$ kF 1/n $ R_{\rm{F}}^2 $ kS βS αS $R_{\rm{S}}^2 $ 186.3 0.33 0.908 108.29 0.11 0.768 201.9 0.61 0.52 0.927 -
[1] MEFTAUL I M, VENKATESWARLU K, DHARMARAJAN R, et al. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?[J]. Environmental Pollution, 2020, 263: 114372. doi: 10.1016/j.envpol.2020.114372 [2] REN Z, DONG Y, LIU Y. Enhanced glyphosate removal by montmorillonite in the presence of Fe(III)[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14485-14492. [3] 刘媛. 草甘膦废水的除磷研究[D]. 杭州: 浙江大学, 2014. [4] 张石云, 宋超, 张敬卫, 等. 哈尼梯田稻鱼共作系统中除草剂的污染特征[J]. 环境科学与技术, 2018, 41(S1): 190-198. [5] 王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7): 29-33. doi: 10.3969/j.issn.1001-3865.2010.07.007 [6] 陈界江, 李凤彩, 高仪斌, 等. 超高效液相色谱-质谱法直接进样测定水中草甘膦和丁基黄原酸[J]. 环境监控与预警, 2018, 10(6): 35-39. doi: 10.3969/j.issn.1674-6732.2018.06.007 [7] MESNAGE R, DEFARGE N, SPIROUX D V J, et al. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits[J]. Food and Chemical Toxicology, 2015, 84: 133-153. doi: 10.1016/j.fct.2015.08.012 [8] HERATH G A D, POH L S, NG W J. Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology[J]. Chemosphere, 2019, 227: 533-540. doi: 10.1016/j.chemosphere.2019.04.078 [9] 赵媛媛, 裴元生, 洪尔超. 溶液化学环境对给水厂废弃铁铝泥吸附草甘膦的影响[J]. 环境工程学报, 2016, 10(9): 4711-4718. doi: 10.12030/j.cjee.201601200 [10] RIDDER D J D, VILLACORTE L, VERLIEFDE A R D, et al. Modeling equilibrium adsorption of organic micropollutants onto activated carbon[J]. Water Research, 2010, 44(10): 3077-3086. doi: 10.1016/j.watres.2010.02.034 [11] DONG S X, WANG Y L, ZHAO Y W, et al. La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study[J]. Water Research, 2017, 126: 433-441. doi: 10.1016/j.watres.2017.09.050 [12] DONG S X, WANG Y L. Removal of acid red 88 by a magnetic graphene oxide/cationic hydrogel nanocomposite from aqueous solutions: adsorption behavior and mechanism[J]. RSC Advances, 2016, 6(68): 63922-63932. doi: 10.1039/C6RA08507E [13] DONG S X, WANG Y L. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Research, 2016, 88: 852-860. doi: 10.1016/j.watres.2015.11.013 [14] ALSBAIEE A, SMITH B J, XIAO L, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2016, 529: 190-194. doi: 10.1038/nature16185 [15] ZHAO F P, REPO E, YIN D L, et al. EDTA-cross-linked beta-cyclodextrin: An environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes[J]. Environmental Science & Technology, 2015, 49(17): 10570-10580. [16] JIANG H L, XU M Y, XIE Z W, et al. Selective adsorption of anionic dyes from aqueous solution by a novel β-cyclodextrin-based polymer[J]. Journal of Molecular Structure, 2020, 1203: 127373. doi: 10.1016/j.molstruc.2019.127373 [17] TU Y Z, XU G Z, JIANG L, et al. Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants[J]. Chemical Engineering Journal, 2020, 382: 123015. doi: 10.1016/j.cej.2019.123015 [18] YU B Y, CHUNG J W, KWAK S Y. Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing β-cyclodextrin derivative[J]. Environmental Science & Technology, 2008, 42(19): 7522-7527. [19] LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. doi: 10.1016/j.cej.2020.124861 [20] HOSSEN M R, DADOO N, HOLOMAKOFF D G, et al. Wet stable and mechanically robust cellulose nanofibrils (CNF) based hydrogel[J]. Polymer, 2018, 151: 231-241. doi: 10.1016/j.polymer.2018.07.016 [21] 袁超, 金征宇. 羟丙基环糊精性质、应用及前景展望[J]. 粮食与油脂, 2009(1): 4-6. doi: 10.3969/j.issn.1008-9578.2009.01.002 [22] HU Y S, ZHAO Y Q, SOROHAN B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual[J]. Desalination, 2011, 271: 150-156. doi: 10.1016/j.desal.2010.12.014 [23] 胡俊松. 天然矿物人工湿地处理含草甘膦废水及相关机理研究[D]. 南京: 南京大学, 2015. [24] 王林, 邹明, 刘晓东, 等. 土壤及生物炭对草甘膦的吸附作用[J]. 水土保持学报, 2019, 33(3): 372-377. [25] 张晓丽, 黄颖. 改性膨润土对水溶液中草甘膦的吸附研究[J]. 福建分析测试, 2008, 17(4): 5-9. doi: 10.3969/j.issn.1009-8143.2008.04.002 [26] 林永东, 孙彦龙, 郑彤, 等. MnO2/Al2O3吸附草甘膦及微波紫外耦合降解再生工艺[J]. 环境工程学报, 2015, 9(4): 1815-1822. doi: 10.12030/j.cjee.20150448 [27] 高远志, 李伟, 段晋明. 草甘膦在高指{201}二氧化钛表面的吸附去除[J]. 环境科学学报, 2017, 38(1): 220-228. [28] ZENG H N, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal, 2019, 358: 253-263. doi: 10.1016/j.cej.2018.10.001 [29] LI J Y, WANG Y L, DOU X M, et al. Brilliant red X-3B uptake by a novel polycyclodextrin-modified magnetic cationic hydrogel: Performance, kinetics and mechanism[J]. Journal of Environmental Sciences, 2020, 89: 264-276. doi: 10.1016/j.jes.2019.09.008 [30] TAN P, HU Y Y. Improved synthesis of graphene/β-cyclodextrin composite for highly efficient dye adsorption and removal[J]. Journal of Molecular Liquids, 2017, 242: 181-189. doi: 10.1016/j.molliq.2017.07.010 [31] 周长印. 改性聚苯乙烯树脂制备及吸附/氧化去除水中草甘膦的研究[D]. 青岛: 青岛科技大学, 2018. [32] CRINI G. Studies on adsorption of dyes on beta-cyclodextrin polymer[J]. Bioresource Technology, 2003, 90(2): 193-198. doi: 10.1016/S0960-8524(03)00111-1 [33] 芦家娟. 纳米颗粒物及其与腐殖酸的复合体对阿特拉津的吸附研究[D]. 北京: 中国科学院大学, 2009. [34] 孙梅香, 刘文, 高嘉苓, 等. 荧光光谱法研究草甘膦与腐殖酸的相互作用[J]. 环境化学, 2015, 34(8): 1529-1534. doi: 10.7524/j.issn.0254-6108.2015.08.2014122401