[1] MEFTAUL I M, VENKATESWARLU K, DHARMARAJAN R, et al. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?[J]. Environmental Pollution, 2020, 263: 114372. doi: 10.1016/j.envpol.2020.114372
[2] REN Z, DONG Y, LIU Y. Enhanced glyphosate removal by montmorillonite in the presence of Fe(III)[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14485-14492.
[3] 刘媛. 草甘膦废水的除磷研究[D]. 杭州: 浙江大学, 2014.
[4] 张石云, 宋超, 张敬卫, 等. 哈尼梯田稻鱼共作系统中除草剂的污染特征[J]. 环境科学与技术, 2018, 41(S1): 190-198.
[5] 王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7): 29-33. doi: 10.3969/j.issn.1001-3865.2010.07.007
[6] 陈界江, 李凤彩, 高仪斌, 等. 超高效液相色谱-质谱法直接进样测定水中草甘膦和丁基黄原酸[J]. 环境监控与预警, 2018, 10(6): 35-39. doi: 10.3969/j.issn.1674-6732.2018.06.007
[7] MESNAGE R, DEFARGE N, SPIROUX D V J, et al. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits[J]. Food and Chemical Toxicology, 2015, 84: 133-153. doi: 10.1016/j.fct.2015.08.012
[8] HERATH G A D, POH L S, NG W J. Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology[J]. Chemosphere, 2019, 227: 533-540. doi: 10.1016/j.chemosphere.2019.04.078
[9] 赵媛媛, 裴元生, 洪尔超. 溶液化学环境对给水厂废弃铁铝泥吸附草甘膦的影响[J]. 环境工程学报, 2016, 10(9): 4711-4718. doi: 10.12030/j.cjee.201601200
[10] RIDDER D J D, VILLACORTE L, VERLIEFDE A R D, et al. Modeling equilibrium adsorption of organic micropollutants onto activated carbon[J]. Water Research, 2010, 44(10): 3077-3086. doi: 10.1016/j.watres.2010.02.034
[11] DONG S X, WANG Y L, ZHAO Y W, et al. La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study[J]. Water Research, 2017, 126: 433-441. doi: 10.1016/j.watres.2017.09.050
[12] DONG S X, WANG Y L. Removal of acid red 88 by a magnetic graphene oxide/cationic hydrogel nanocomposite from aqueous solutions: adsorption behavior and mechanism[J]. RSC Advances, 2016, 6(68): 63922-63932. doi: 10.1039/C6RA08507E
[13] DONG S X, WANG Y L. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Research, 2016, 88: 852-860. doi: 10.1016/j.watres.2015.11.013
[14] ALSBAIEE A, SMITH B J, XIAO L, et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2016, 529: 190-194. doi: 10.1038/nature16185
[15] ZHAO F P, REPO E, YIN D L, et al. EDTA-cross-linked beta-cyclodextrin: An environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes[J]. Environmental Science & Technology, 2015, 49(17): 10570-10580.
[16] JIANG H L, XU M Y, XIE Z W, et al. Selective adsorption of anionic dyes from aqueous solution by a novel β-cyclodextrin-based polymer[J]. Journal of Molecular Structure, 2020, 1203: 127373. doi: 10.1016/j.molstruc.2019.127373
[17] TU Y Z, XU G Z, JIANG L, et al. Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants[J]. Chemical Engineering Journal, 2020, 382: 123015. doi: 10.1016/j.cej.2019.123015
[18] YU B Y, CHUNG J W, KWAK S Y. Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing β-cyclodextrin derivative[J]. Environmental Science & Technology, 2008, 42(19): 7522-7527.
[19] LI R N, XUE T S, LI Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. doi: 10.1016/j.cej.2020.124861
[20] HOSSEN M R, DADOO N, HOLOMAKOFF D G, et al. Wet stable and mechanically robust cellulose nanofibrils (CNF) based hydrogel[J]. Polymer, 2018, 151: 231-241. doi: 10.1016/j.polymer.2018.07.016
[21] 袁超, 金征宇. 羟丙基环糊精性质、应用及前景展望[J]. 粮食与油脂, 2009(1): 4-6. doi: 10.3969/j.issn.1008-9578.2009.01.002
[22] HU Y S, ZHAO Y Q, SOROHAN B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual[J]. Desalination, 2011, 271: 150-156. doi: 10.1016/j.desal.2010.12.014
[23] 胡俊松. 天然矿物人工湿地处理含草甘膦废水及相关机理研究[D]. 南京: 南京大学, 2015.
[24] 王林, 邹明, 刘晓东, 等. 土壤及生物炭对草甘膦的吸附作用[J]. 水土保持学报, 2019, 33(3): 372-377.
[25] 张晓丽, 黄颖. 改性膨润土对水溶液中草甘膦的吸附研究[J]. 福建分析测试, 2008, 17(4): 5-9. doi: 10.3969/j.issn.1009-8143.2008.04.002
[26] 林永东, 孙彦龙, 郑彤, 等. MnO2/Al2O3吸附草甘膦及微波紫外耦合降解再生工艺[J]. 环境工程学报, 2015, 9(4): 1815-1822. doi: 10.12030/j.cjee.20150448
[27] 高远志, 李伟, 段晋明. 草甘膦在高指{201}二氧化钛表面的吸附去除[J]. 环境科学学报, 2017, 38(1): 220-228.
[28] ZENG H N, WANG L, ZHANG D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal, 2019, 358: 253-263. doi: 10.1016/j.cej.2018.10.001
[29] LI J Y, WANG Y L, DOU X M, et al. Brilliant red X-3B uptake by a novel polycyclodextrin-modified magnetic cationic hydrogel: Performance, kinetics and mechanism[J]. Journal of Environmental Sciences, 2020, 89: 264-276. doi: 10.1016/j.jes.2019.09.008
[30] TAN P, HU Y Y. Improved synthesis of graphene/β-cyclodextrin composite for highly efficient dye adsorption and removal[J]. Journal of Molecular Liquids, 2017, 242: 181-189. doi: 10.1016/j.molliq.2017.07.010
[31] 周长印. 改性聚苯乙烯树脂制备及吸附/氧化去除水中草甘膦的研究[D]. 青岛: 青岛科技大学, 2018.
[32] CRINI G. Studies on adsorption of dyes on beta-cyclodextrin polymer[J]. Bioresource Technology, 2003, 90(2): 193-198. doi: 10.1016/S0960-8524(03)00111-1
[33] 芦家娟. 纳米颗粒物及其与腐殖酸的复合体对阿特拉津的吸附研究[D]. 北京: 中国科学院大学, 2009.
[34] 孙梅香, 刘文, 高嘉苓, 等. 荧光光谱法研究草甘膦与腐殖酸的相互作用[J]. 环境化学, 2015, 34(8): 1529-1534. doi: 10.7524/j.issn.0254-6108.2015.08.2014122401