-
硝化菌是活性污泥体系中起硝化作用的主要因素,但硝化菌生长缓慢,易受外界环境影响,pH、温度、溶解氧(dissolved oxygen, DO)和C/N等会使硝化菌活性受到抑制[1]。研究团队在对全国58座污水处理厂进行的全流程调研分析中发现,污水处理厂平均硝化速率仅为2.9 mg·(g·h)−1(以VSS计),远低于理论硝化速率4 mg·(g·h)−1 (GB 50014-2006)。这可能是因为硝化菌易受环境影响导致菌体流失[2],因此,将硝化性能良好的活性污泥进行固定化处理具有重要意义。
硝化菌富集包括纯菌扩大培养和活性污泥富集培养2种主要培养方式[3]。使用活性污泥富集法中的序批式间歇反应器(sequencing batch reactor, SBR)富集方法进行硝化菌富集时,具有成本低、菌种稳定、生物相容性好等优点。该富集方法通过调节水质中氨氮负荷,抑制异养型菌属的增长,促进硝化菌的繁殖,达到富集硝化菌的目的,即依靠硝化菌自我代谢提高硝化菌占比,但是富集效果相对较弱。
PVA水凝胶空间网络稳定,有丰富的孔隙结构,微生物亲和性好,可用作活性污泥包埋剂[4],但PVA凝胶球总孔容相对较小且胶连过程中易发生曳尾现象。而聚氧化丙烯三醇是一种聚醚多元醇,常用作增韧剂[5],可用作凝胶球改性。
本研究通过基于降低C/N比的活性污泥富集法提高活性污泥硝化性能,并将驯化后的活性污泥制作成改性凝胶包埋颗粒,分析比较了改性材料性能和活性污泥在不同阶段的微生物群落变化及污泥活性指标,以期为研究活性污泥包埋颗粒在废水治理领域的可行性提供参考。
活性污泥包埋颗粒的制备及其氨氮处理性能
Preparation of activated sludge embedded particles and the treatment performance of ammonia nitrogen
-
摘要: 脱氮是污水治理的重要目标之一。在实际污水处理中,由于起主要脱氮作用的硝化菌生殖代谢速率慢,易受冲击,且易流失,以致活性污泥的脱氮能力在运行过程中易受影响,因此,利用微生物固定化技术将硝化菌截留在生化池中具有重要意义。经聚氧化丙烯三醇(polyoxypropylene triol, PPT)改性后的聚乙烯醇(polyvinyl alcohol, PVA)凝胶颗粒可以有效将活性污泥进行固定化并用于污水处理中。结果表明:改性后的凝胶球具有热稳定性好、孔隙分布均匀、比表面积较大、总孔容较大等优点,用改性聚乙烯醇凝胶颗粒包埋驯化后的活性污泥,经过活性恢复处理后,与初始污泥相比,氨氧化速率提升18.28%,呼吸速率降低2.01%,且由于形成较好的厌氧、缺氧、好氧环境,微生物种群多样性、物种丰富度及群落均匀性均升高,并有较好的氨氮去除性能,在低浓度废水治理中,氨氮去除率达到70%。上述研究中分析了改性凝胶颗粒的性能以及包埋活性污泥中微生物菌群和活性的变化,可为凝胶包埋活性污泥技术在氨氮废水治理的研究提供参考。Abstract: Nitrogen removol is one of the most important objectives in sewage treatment. In actual sewage treatment, the nitorgen removal capacity of activated sludge can be easily influenced due to the slow reproduction and metabolism rates, susceptible to shock and easy-loss of nitrifying bacteria, which play the key role in nitrogen removal. So it is of great significance to use immobilized microorganism technology to maintain nitrifying bacteria in biochemical tank. The polyvinyl alcohol (PVA) gel particles modified by polyoxypropylene triol (PPT) can effectively immobilize activated sludge and be used in sewage treatment. This study showed that the modified gel ball had the advantages of good thermal stability, uniform pore distribution, large specific surface area, and large total pore volume. After activity recovery, the embedded and domesticated activated sludge by modified polyvinyl alcohol gel particles showed 18.28% increase in its ammonia oxidizing rate and 2.01% decrease in its respiration rate when compared with the original sludge. Due to the formation of the anaerobic-anoxic-aerobic environment in gel particle, the microbial community diversity indexes, i.e. shannon diversity, species richness, and community evenness, increased, and good ammonia nitrogen removal occurred for immobilized activated sludge. The removal rate of ammonia nitrogen could reach 70% for low strength wastewater treatment. In this research, the properties of modified gel materials and the changes of microbial community and activity in embedded activated sludge were studied and analyzed, which provides reference for the research of gel-embedding activated sludge technology in ammonia nitrogen wastewater treatment.
-
Key words:
- gel particles /
- activated sludge /
- microbial activity /
- ammonia nitrogen
-
表 1 驯化前后活性污泥生物活性
Table 1. Biological activity of activated sludge before and after domestication
采样阶段 MLSS/
(mg·L−1)MLVSS/
(mg·L−1)AUR/
(mg·(g·h)−1)SOUR/
(mg·(g·h)−1)驯化前 4 368 2 460 2.044 19.317 驯化后 4 008 2 387 2.645 21.868 表 2 改性包埋颗粒孔结构参数
Table 2. Pore structural parameters of modified embedded particles
样品 比表面积/(m2·g−1) 总孔容积/(cm3·g−1) 平均孔径/nm 未改性凝胶球 0.315 0.004 51.870 改性凝胶球 1.528 0.015 39.362 表 3 Alpha多样性指数
Table 3. Alpha diversity indexes
样品 OTU Chao Shannon Shannoneven 初始污泥 1 322 1 518 5.14 0.71 活性污泥 1 392 1 636 4.90 0.67 凝胶包埋污泥 1 638 1 856 5.89 0.79 -
[1] 伊静婷, 董焱. 生物脱氮的影响因素分析[J]. 化工管理, 2014, 21(5): 125-125. doi: 10.3969/j.issn.1008-4800.2014.05.111 [2] 何雪薇. 固定化硝化污泥的定植方法及其去除水中氨氮的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [3] 罗小溪, 高建忠, 陈再忠. 硝化细菌富集培养及应用研究进展[J]. 水产科技情报, 2013, 40(6): 47-50. [4] 廉哲, 胡安杨, 张毅, 等. 聚乙烯醇/海藻酸钠互穿网络水凝胶结构与性能研究[J]. 高分子通报, 2014, 27(2): 156-161. [5] ZHANG G, YE L. Toughening of polyvinyl alcohol hydrogel through co-crosslinking and its wastewater treatment performance by immobilizing with microorganism[J]. Journal of Polymers and the Environment, 2017, 25(2): 229-240. doi: 10.1007/s10924-016-0801-8 [6] 刘益军. 用于耐高温聚氨酯的聚醚三醇[J]. 聚氨酯工业, 2000, 17(1): 44. [7] 王福琨, 刘永军, 宋雪松, 等. 颗粒污泥破碎-再形成过程中微生物胞外聚合物(EPS)的变化及其与污泥特性的相关性分析[J]. 环境化学, 2013, 32(12): 2233-2242. doi: 10.7524/j.issn.0254-6108.2013.12.002 [8] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [9] 谭炳琰, 储昭瑞, 吴桂荣, 等. PVA-SA水凝胶生物载体的制备及其性能研究[J]. 广州大学学报(自然科学版), 2018, 17(2): 81-87. [10] 许晓毅, 张婷婷, 尤晓露, 等. 包埋固定化硝化污泥处理氨氮废水的过程特性[J]. 中国环境科学, 2016, 36(10): 2988-2996. [11] PU H T, YANG R Y K. Diffusion of sucrose and yohimbine in calcium alginate gel beads with or without entrapped plant cells[J]. Biotechnology and Bioengineering, 1988, 32(7): 891-896. doi: 10.1002/bit.260320707 [12] 曹国民, 赵庆祥, 孙贤波, 等. 氨氮、硝酸盐氮和亚硝酸盐氮在PVA凝胶膜中的扩散性能[J]. 环境科学, 2002, 23(2): 65-68. doi: 10.3321/j.issn:0250-3301.2002.02.013 [13] WIESMANN R, ZIMELKA W, BAUMGARTL H, et al. Investigation of oxygen transfer through the membrane of polymer hollowspheres by oxygen micro-electrodes[J]. Journal of Biotechnology, 1994, 32(3): 221-229. doi: 10.1016/0168-1656(94)90208-9 [14] 支尧, 张光生, 郑凯凯, 等. 生物吸附/A2O组合工艺处理城市污水效能及其微生物群落结构[J]. 应用与环境生物学报, 2017, 23(5): 892-899. [15] 黄佩蓓. 海洋浮霉状菌多样性与生态学功能研究进展[J]. 微生物学通报, 2014, 41(9): 1891-1902. [16] BENGTSSON M M, OVREAS L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea[J]. BMC Microbiology, 2010, 10(1): 261-270. doi: 10.1186/1471-2180-10-261