太阳能热解制备生物炭及其对水中铜离子的吸附

常全超, 杜玉凤, 戴敏, 林帝出, 彭昌盛. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
引用本文: 常全超, 杜玉凤, 戴敏, 林帝出, 彭昌盛. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
CHANG Quanchao, DU Yufeng, DAI Min, LIN Dichu, PENG Changsheng. Biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
Citation: CHANG Quanchao, DU Yufeng, DAI Min, LIN Dichu, PENG Changsheng. Biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004

太阳能热解制备生物炭及其对水中铜离子的吸附

    作者简介: 常全超(1995—),男,硕士研究生。研究方向:水污染控制。E-mail:changquanchao@126.com
    通讯作者: 彭昌盛(1972—),男,博士,副教授。研究方向:环境新材料。E-mail:pcs005@ouc.edu.cn
  • 基金项目:
    国家自然科学基金-山东省政府联合基金重点项目(U1806210);肇庆市2018年省科技创新战略专项资金项目(2018N006)
  • 中图分类号: X703

Biochar prepared by solar pyrolysis and its adsorption of copper ions in water

    Corresponding author: PENG Changsheng, pcs005@ouc.edu.cn
  • 摘要: 当前生物炭的制备主要依赖以电力为热源的传统热解方式,存在能耗高、污染大等问题,在一定程度上限制了生物炭作为吸附材料在工业水处理领域中的应用。为寻求生物炭制备的新途径,以玉米秸秆、牛粪为原料,采用太阳能热解技术制备生物炭,并与传统热解方式制备的生物炭进行了比较,考察了两者在理化性质和吸附性能上的差异。结果表明,经不同热解工艺所制备的相同生物炭材料的比表面积和微观形貌基本相同,理化性质相似。其中:玉米秸秆生物炭在最佳pH=6的条件下对Cu2+的吸附符合Langmuir等温吸附模型,最大吸附容量约为25.87 mg·g−1;牛粪生物炭对Cu2+的吸附符合Freundlich等温吸附模型,两者均符合准二级动力学模型。综合上述结果,太阳能热解技术作为制备生物炭材料的新工艺,其制备的生物炭材料可成功应用于水中重金属离子的去除。
  • 新疆维吾尔自治区南疆地区地处西北极端干旱沙漠区,近年来,随着该区农业生产水平不断提高,生产规模随之扩大,对水资源和氮磷资源的需求量呈逐年上升趋势。氮磷资源的大量使用,一方面致使氮磷资源短缺的问题不断加剧,另一方面诱发了各种各样的环境问题[1]。在农业生产过程中,畜牧业作为新疆南疆最具特色的传统基础产业之一,在蓬勃发展的同时,各种各样的问题也接踵而至。其中,养殖废水中污染物的不合理排放导致了该区资源的严重浪费和塔里木河流域的局部地区污染。养殖废水中含有大量氮、磷,若处置不恰当,将导致氮、磷资源的流失,加剧水体富营养化[2]。此外,土壤盐渍化也是南疆地区典型的环境问题之一,盐渍化土壤水相中富集大量盐分离子,主要包括K+、Ca2+、Na+、Mg2+CO23HCO3SO24、Cl8种离子[3],离子含量随地区变化呈现不同的分布特征,其中主要以氯化物或硫酸盐-氯化物为主[4]。由于南疆农田土壤盐分含量较高,需定期进行灌溉排盐才能满足植物的生长需要,这进一步导致了塔里木河中盐分离子的持续升高。因此,养殖废水的氮磷污染问题和高浓度的农田盐碱排水问题的双重叠加效应对南疆生态环境造成了极大的压力,亟需寻找一种既能够减少水体污染又能回收氮磷资源的有效方法。

    国内外对磷回收方式包括化学沉淀法和结晶法等传统方法,还有源分离技术[5]、吸附/解吸法[6]和滤池过滤回收法[7]等物化回收技术及生物质磷回收技术、膜生物反应器(membrane bio-reactor, MBR)工艺和强化生物除磷(enhanced biological phosphorus removal, EBPR)工艺等生物回收技术[8]以及最近研究聚焦的污泥回收磷技术[9-10]和纳米技术[11]等。每种方法均有各自的优缺点。吸附/解吸附法中常用的吸附剂有水化硅酸钙、明矾污泥等,但由于吸附剂吸附容量较小,存在毒理性危害,限制了吸附/解吸附法在回收磷方面的应用。另外,目前一些新兴吸附剂如改性生物炭等也逐渐引起了研究者的注意[12]。上述这些新兴技术大多处在研究阶段,回收成本较高,还未大规模使用[14]。相比之下,化学沉淀法具备迅速将高浓度磷酸盐去除回收的特点,当与其他工艺结合起来时,不仅有化学沉淀量大、沉淀效果好的特点,还具备其他工艺的优势[13-14]。鸟粪石沉淀法(MAP)又称磷酸铵镁沉淀法[15],是化学沉淀法的典型代表,作为一种成熟、可靠、高效的磷回收技术,近年来受到越来越多的关注。原理是将Mg、N、P按照一定摩尔比,在碱性环境下生成鸟粪石(MgNH4PO4·6H2O),以此来实现氨氮和磷的同步回收。该方法生成的目标产物是一种良好的氮磷缓释肥,被广泛应用于农业生产,可获得经济效益[16-19]。鸟粪石沉淀法的主要反应如式(1)~式(3)所示。

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)

    镁源是制约MAP沉淀法大规模使用的重要因素。常用的镁源主要是MgCl2、MgSO4、MgO等溶解性化合物[20-21],这些镁化合物造价较为昂贵,将其作为镁源会大大提高MAP沉淀法的成本。因此,寻求低成本镁源是提高MAP沉淀法经济效益的有效途径[22]。很多学者之前已经采用海水、苦卤水[23-25]作为廉价镁源回收磷,并取得了较好的回收效果。由于新疆南疆农田土壤盐渍化极其严重,排水中的盐分含量较高,总盐质量浓度高达3~4 g·L−1[26],这为养殖废水中氮磷回收提供了潜在的镁源。如果能够将其加以利用,不仅能够回收养殖废水中氮磷污染物并加以资源化,还能够有效降低排入水体中的盐分离子及引发次生盐渍化。海水中Mg2+质量浓度约为1.2 g·L−1,相比之下,渍化土壤排水中Mg2+占总盐含量的6%~20%,为0.2~0.6 g·L−1[3-4],Mg2+含量略低于海水中的含量。由于渍化土壤排水中离子种类比海水少,开发难度相对较低,新疆地区每年需进行的春灌和冬灌为获得大量的渍化土壤排水提供了可行条件,因此,将盐渍化土壤水体作为镁源在技术和经济上具有可行性[27]

    本研究结合新疆养殖业的氮磷污染和盐渍化问题,利用农田高盐排水作为镁源对氮磷废水中的磷进行回收,通过对比实验、正交实验和干扰离子影响实验,综合分析了高盐排水回收磷的回收效果和经济可行性;将治理盐渍化问题与磷回收结合起来,开发了氮、磷回收利用与污染控制相结合的集成技术模式,所得结果对提升现行养殖废水处理技术水平,实现社会效益、经济效益和环境效益三者的统一具有重要意义。

    供试试剂:氯化铵、磷酸氢二钠、六水氯化镁、酒石酸钾钠、酒石酸锑氧钾、过硫酸钾、纳什试剂、氨基磺酸、抗坏血酸、磷酸二氢钾、硝酸钾、钼酸铵、氢氧化钠、盐酸、硫酸、氯化钙、氯化钠、氯化钾、硫酸钠、碳酸氢钠,供试试剂均为分析纯,购自国药集团化学试剂有限公司。

    实验仪器:循环水式多用真空泵(SHB-III,郑州预科仪器有限公司)、集热式磁力搅拌器(DF-101B,金坛友联仪器研究所)、紫外可见分光光度计(UV-5500,上海元析仪器有限公司)、pH计(FiveEasy PlusTM FE28,上海全脉科学仪器有限公司)、自热恒温培养箱(HPX-9162MBE,上海赫田仪器有限公司)、电热鼓风干燥箱(GZX-9146MBE,上海百典仪器设备有限公司)、手提式压力蒸汽灭菌器(YXQ-SG46-280S,上海博讯仪器有限公司)、全温振荡器(BS-2F,上海荣计达实验仪器有限公司)。

    养殖废水中氮主要以氨态氮、硝态氮等形式存在,总氮质量浓度为200~2 000 mg·L−1;总磷质量浓度为50~800 mg·L−1[28-29]。对样品进行离心、过滤[30]等前处理后,进一步对其进行各项指标的测定。实验所需的养殖废水取自阿拉尔市十四团宏盛牧歌养殖有限公司,废水为一级厌氧消化后的处理物,主要物理化学指标如下:总磷为(205.00±2.50) mg·L−1、氨氮为(408.46±6.34) mg·L−1、含盐量为0.66%、电导率为12.18±3.44、pH为7.18±0.80。依据上述养殖废水中的氨氮、总磷含量配制相应的模拟废水。具体配置方法如下:取1.187 7 g NH4Cl溶于去离子水中,配制氨氮质量浓度为400 mg·L−1的标液,并按照n(N)∶n(P)=1∶1,准确称取7.950 7 g Na2HPO4溶于去离子水中配置磷质量浓度为668 mg·L−1的磷标液,以便后续易控制实验中氮磷摩尔比。

    本研究通过土壤振荡淋洗法获得高盐水样,实验土样取自阿拉尔十团棉田,并收集了棉田周边沟渠的农田排水。南疆地区农田排水中的镁离子质量浓度为0.2~0.6 g·L−1[31]。本研究为了考察不同质量浓度的高盐排水对磷回收的影响和满足后续研究需要,对农田排水进行了离子富集处理。具体步骤为:称取100 g盐渍土,放入500 mL三角瓶中,按1∶5的土水比加入500 mL去离子水,标记此时液面位置。为了防止在振荡过程中溶液损失,提前用保鲜膜和锡箔纸封口。将三角瓶放入BS-2F全温振荡器中,温度调至25 ℃,以180 r·min−1振荡30 min。之后,将获得的水土混合液用真空抽滤泵进行抽滤,实现上清液和固体颗粒物分离。继续称取100 g盐渍土样,将过滤后的上清液与100 g盐渍土混合,为了保证土水比始终为1∶5,加水至标记位置,此为1个循环,共计5个循环。用密封性好的试剂瓶将滤液储存。测定滤样中的离子成分,并与农田水样离子成分进行对比。

    设计2组对比实验。第1组考察MgCl2和高盐排水的回收磷的效果:首先,配制Mg2+质量浓度为0.2、0.4、0.6、0.8、1.0 g·L−1梯度的MgCl2溶液;再用去离子水将制备的高盐排水进行稀释,稀释至与上述MgCl2溶液对应的5个Mg2+浓度,并将15 mL氨氮标液和15 mL磷标液进行混合。将上述5份Mg2+高盐排水和5份不同浓度的MgCl2溶液分别投加到上述氮磷混合液中,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组。反应过程中实时检测pH变化,反应20 min后测定反应前后磷的变化量,计算磷回收率。

    第2组实验主要考察pH对高盐排水回收磷效果的影响。选择Mg2+浓度梯度为上述实验中磷回收率最高的1组,探究在其余条件不变的情况下,当pH为7、8、9、10和11时磷的回收率。

    在南疆的农田排水中,Mg2+、K+、Ca2+、Na+CO23HCO3SO24和Cl等离子的占比较高[32],可能会对磷回收产生一定的影响。因此,本研究进一步探讨了干扰离子对高盐排水回收磷的影响。高盐排水中除Mg2+外还有K+、Ca2+和Na+等金属阳离子,他们之间存在一定的化学相似性。因此,与阴离子相比,金属阳离子对氮磷回收反应的干扰性较大,应优先考虑金属阳离子对高盐排水回收磷的影响。分别配制浓度为0.001 mol·L−1和0.01 mol·L−1的KCl、CaCl2、和NaCl溶液,氮磷标液的配制同上,Mg2+浓度的选择1.4中磷回收率较高的一组。具体实验操作如下:以K+为例,取15 mL氨氮标液和15 mL磷标液配制成2份氮磷混合标液,分别加入15 mL 0.001 mol·L−1、0.01 mol·L−1的KCl溶液,再加入15 mL MgCl2溶液,反应pH、N∶P摩尔比、温度、转速和反应时间分别设置为9、1∶1、25 ℃、100 r·min−1和20 min,并设置3个平行组;Ca2+和Na+实验设置同上。由于农田排水中的CO23含量较低[33],本研究未考虑CO23对磷回收的影响,阴离子仅探讨HCO3SO24和Cl对磷回收的影响。分别配制0.001 mol·L−1和0.01 mol·L−1 2个质量浓度梯度的 Na2SO4、NaHCO3和NaCl溶液,其余反应条件同上,反应20 min后测定反应前后磷的变化量,计算磷回收率。

    由于影响氮磷回收的因素较多,本实验设置了三因素四水平正交实验(L34)[34]探讨pH(8、9、10、11)、Mg∶P(1.0、1.5、2.0、2.5)和N∶P(1.0、1.5、2.0、2.5)摩尔比对磷回收的影响(表1),以获得最优的反应条件。其中,反应温度设置25 ℃、转速100 r·min−1,反应时间20 min。实验过程中,通过改变pH、Mg∶P摩尔比和N∶P摩尔比的不同组合探究对磷回收率的影响。

    表 1  高盐排水回收氮磷影响因素正交实验表
    Table 1.  Orthogonal experiment table of influencing factors of nitrogen and phosphorus recovery by high salt drainage
    实验号pHMg∶PN∶P
    ABC
    181.01.0
    291.51.5
    3102.02.0
    4112.54.0
     | Show Table
    DownLoad: CSV

    土壤和水体中的盐分离子测定方法如下:采用EDTA络合滴定法测定Ca2+和Mg2+[35];采用火焰光度法测定K+和Na+[36];采用双电极法测定CO23HCO3[37];采用硝酸银滴定法测定Cl [38];采用EDTA间接滴定法测定SO24[39]

    MgCl2和高盐排水对磷的回收效果用TP回收率表示,TP根据式(4)进行计算。

    stringUtils.convertMath(!{formula.content}) (4)

    式中:Re为TP回收率;C1为溶液中初始磷质量浓度,mg·L−1C2为反应溶液中磷剩余质量浓度,mg·L−1

    溶液中的TP浓度采用钼锑抗分光光度法进行测定[40];溶液pH采用FiveEasy PlusTM FE28 pH计测量;反应沉淀物置于50 ℃烘箱中干燥3 h,采用扫描电镜(SEM-EDS)、X射线衍射(diffraction of x-rays, XRD)分析沉淀物形态特征及元素组成。

    利用IBM SPSS Statistics(23,IBM,美国)进行数据分析,分析过程中出现的Ki为表中各列因素水平i(1,2,3,4)的磷回收率之和后的均值,Kij为在j(A,B,C)因素下i的磷回收率之和后的均值,极差R为每列因素Ki中最大值和最小值之差;采用Origin(2019b,OriginLab,美国)、Excel(2020,微软,美国)进行数据绘图;采用Jade(6.5,MDI,美国)进行XRD衍射图谱分析。

    农田排水中SO24含量最高,Na+和Cl居于其次,金属阳离子含量适中,CO23HCO3占比较低(表2),这主要与新疆地区特殊的土壤条件有关[41]。为了满足实验需求,本实验对土壤淋洗液采用离子富集方法进行了处理。由表2可知,经过5次浓缩处理后,金属阳离子、SO24和Cl浓度显著提高,其中Mg2+质量浓度更是达到了2.14 g·L−1。本实验制备的高盐排水中Mg2+质量浓度达到了2.14 g·L−1,Mg2+质量浓度低于吕媛等[24]实验所使用的海水水样(7.00 g·L−1),但高于张萍等[23]使用的海水水样(1.22 g·L−1)。HCO3稳定性较差,经过振荡操作后,样品中HCO3以CO2形式逸出,致使其含量降低。

    表 2  高盐排水主要离子成分及含量
    Table 2.  Main ion composition and content of high salt drainage mg·L−1
    排水Ca2+Mg2+Na+K+
    高盐排水1 532.00±287.002 136.00±565.3455 461.58±1024.221 006.56±105.25
    农田排水512.10±101.68366.10±93.761 071.28±206.39176.98±20.13
    排水CO23HCO3ClSO24
    高盐排水未检出164.57±20.3571 680.80±787.4527 058.75±458.54
    农田排水23.43±4.72316.66±75.441 422.70±351.882 331.84±301.03
     | Show Table
    DownLoad: CSV

    高盐排水中Mg2+质量浓度约为0.2~0.6 g·L−1,为了提高Mg2+质量浓度,可以对高盐排水进行浓缩(膜蒸馏、浸渍)处理。为满足实验需求,采用了多次浸渍制得Mg2+质量浓度为2.14 g·L−1高盐排水。多次浸渍可以有效提高高盐排水中Mg2+含量,以此来降低高盐排水的投加量,可避免二次污染现象的发生。

    在投加MgCl2溶液和投加高盐排水的2个实验组中,TP平均回收率均随Mg2+质量浓度升高呈现递增的趋势(图1图2)。当Mg2+质量浓度为1.0 g·L−1时,在投加MgCl2溶液的实验组中,TP平均回收率达到84.15%;在投加高盐排水的实验组中,TP的回收率为83.65%,比前者略低。对于同一Mg2+质量浓度下的MgCl2溶液和高盐排水,当n(Mg)∶n(P)<1.9时,高盐排水的TP平均回收率近似或略高于MgCl2溶液。其原因可能是,高盐排水成分较为复杂,除Mg2+外还含有大量的K+、Ca2+、Na+CO23HCO3SO24和Cl等离子,正是由于这些离子的存在,与反应溶液中的Mg2+进行竞争[42],其争夺磷的能力要强于单纯的MgCl2溶液,促进了磷的回收。以最典型Ca2+为例,钙镁离子在元素周期表中位列同一族,化学性质极其相似,Ca2+易与溶液中的磷酸根离子反应,生成难溶于水的羧基磷灰石(Ca5OH(PO4)3)和磷酸钙等物质。当钙镁摩尔比不同时,对反应的影响也不同,具体分析在干扰离子实验中说明。另外,当Mg2+质量浓度低于0.6 g·L−1时,溶液中n(Mg)∶n(P)<1,两者的磷回收率较低;随着Mg2+质量浓度的提高,溶液中n(Mg)∶n(P)接近1,TP回收速率有了较为显著的提升。当Mg2+质量浓度达到1.0 g·L−1,溶液中n(Mg)∶n(N)∶n(P)=1.9:1∶1,此时,磷的平均回收率能够达到83.85%。

    图 1  投加不同镁源对总磷回收效果
    Figure 1.  Effect of adding different magnesium sources on total phosphorus recovery
    图 2  pH环境对不同镁源回收总磷的影响
    Figure 2.  Effect of pH environment on total phosphorus recovery from different magnesium sources

    图2反映出常规MgCl2和高盐排水的TP回收率均随pH升高整体呈现先升高后降低的趋势。当pH为7时,MgCl2和高盐排水对TP的回收率最低,分别为13.21%和14.61%,表明中性环境不利于反应的进行;当溶液环境逐渐转变为碱性时,TP回收率逐渐升高,并在pH为10时TP的回收率分别达到临界值86.42%和87.19%;临界值过后,两者的TP回收率随pH升高急剧降低,当pH为11时,两者的TP回收率仅为13.69%和26.21%。MgCl2溶液在pH为9时的TP回收率为85.49%,接近临界值86.42%;相比之下,此时高盐排水对TP回收率仅为81.61%;当pH为11时,高盐排水对TP回收率比MgCl2溶液高。反应结束后,溶液中高盐排水中TP剩余质量浓度要高于MgCl2,且在Mg2+质量浓度为0.2 g·L−1时最为显著。造成这些现象的原因可以归结于高盐排水复杂的离子环境。由于共存离子的存在,一方面使反应所需的pH提高;另一方面,当Mg2+浓度较低时,会使NH4+、PO42-与Mg2+的碰撞概率降低,降低反应速率[43]。吴健等[19]、鲍小丹等[44]发现,生成鸟粪石的最适pH为9.0;李洪刚等[17]、畅萧等[45]发现,当pH为9.5时,有利于鸟粪石的回收;李爱秀等[46]在优化猪场沼液氮磷工艺参数时得出最适pH为10。这些研究结果与本研究获得的结果一致。

    图3表明,干扰离子对磷回收产生了不同程度的影响。TP初始质量浓度为172 mg·L−1,当溶液中只有Mg2+存在时,反应后溶液中TP剩余量53.83 mg·L−1。当金属阳离子浓度为0.001 mol·L−1时, K+、Ca2+、Na+实验组中TP剩余量依次为59.40、55.69、58.16 mg·L−1;当离子浓度上升至0.01 mol·L−1时,K+、Ca2+、Na+实验组中TP剩余量分别为50.74、28.46、55.07 mg·L−1(图3(a))。这表明Ca2+含量对磷的回收产生了较大影响。当Ca2+离子浓度较低时,反应溶液中磷剩余量与不存在干扰离子的对照组相比略高,此时Ca2+造成的影响较弱;随离子浓度的升高,Ca2+对反应的影响逐渐增强。Ca2+浓度提升10倍,溶液中TP剩余量由55.69 mg·L−1下降至28.46 mg·L−1。TP含量的降低表明,Ca2+浓度的升高对磷的回收起到了显著的促进作用。当溶液中n(Ca)∶n(Mg)<0.5时,反应以Mg2+消耗为主,反应主产物为MgNH4PO4·6H2O;当n(Ca)∶n(Mg)>0.5时,反应朝Ca2+与磷酸根离子结合的方向进行,此时的反应产物主要是磷灰石和磷酸钙等钙形式的化合物[47-48]。如果单从回收磷的角度考虑,新产物的生成进一步促进了磷的回收,但这会对氮磷回收产物中鸟粪石的纯度产生不利影响。生成的磷酸钙沉淀附着在鸟粪石表面,会抑制鸟粪石的生长,降低鸟粪石的纯度[49]。与Ca2+相比,K+、Na+质量浓度对磷的回收影响较小。

    图 3  金属阳离子及阴离子对磷剩余量的关系
    Figure 3.  Relationship between metal cations and anions on residual phosphorus

    磷初始质量浓度为172 mg·L−1,加入MgCl2反应20 min,反应后溶液中磷剩余量54.45 mg·L−1;而分别投加0.001 mol·L−1 SO24HCO3和Cl的实验组磷剩余量依次为63.96、60.60和58.34 mg·L−1(图3(b));当干扰离子浓度上升至0.01 mol·L−1时,SO24HCO3和Cl的实验组磷剩余量分别为64.50、64.93和55.11 mg·L−1。在投加0.001 mol·L−1和0.01 mol·L−1SO24HCO3实验组中,磷剩余量均高于对照组,投加Cl的实验组磷剩余量变化不大。以上结果表明,阴离子的存在对磷的回收产生了抑制作用。导致TP剩余量略高的主要原因如下:SO24带负电,易与金属离子或铵根结合,使溶液中Mg∶P和N∶P摩尔比降低,抑制反应进行[50]HCO3属于弱酸根离子,无法与大量OH共存,当溶解pH较高时,为了维持溶液中的离子平衡,反应向生成CO2和H2O方向进行,溶液中大量OH被消耗使得溶液pH降低,同样会抑制反应进行[51],而Cl影响甚微。因此,阴离子的存在对磷回收也存在一定干扰,这种干扰表现为抑制作用,并且这种抑制作用不会随离子浓度的升高对磷回收产生较大的影响。因此,按照磷剩余量由高到低将各离子对氮磷回收的影响大小排序如下:当离子强度较低时,SO24>HCO3>K+>Na+>Cl>Ca2+;离子强度较高时,HCO3>SO24>Na+>Cl>K+>Ca2+

    对三因素四水平正交实验的极差分析。由表3K1K2K3K4值可以看出,随着Mg∶P和N∶P摩尔比的增大,磷回收率有所提高,并在n(Mg)∶n(P)=2.5∶1、n(N)∶n(P)=4∶1时磷回收率达到最高。KiB由31.08增加至71.37,与Kic相比,KiBK值间增幅较大,这表明Mg∶P对磷回收影响要大于N∶P。当pH在8~10,磷回收率随pH升高而升高,当pH超过11时,K值由K3A的77.33骤降到K4A的19.04,表明磷回收率急剧降低。因此,pH为10是高盐排水回收磷的最适值,稍高于其他文献利用纯MgCl2回收氮磷获得的最适pH(9.5)[52]。当超过最适值时,pH会对高盐排水回收磷的效率产生较大影响,不利于磷的回收。R值的排序为RA>RB>RC,表明pH是决定高盐排水回收磷效率的首要因素,Mg∶P、N∶P摩尔比位居其次,这与前面对于K值的分析结果一致。由图4可见,3条数据线的峰值分别对应pH=10、n(Mg)∶n(P)=2.5∶1、n(N):n(P)=4∶1,该组合即为极差分析得出的最佳反应组合。

    表 3  高盐排水磷平均回收率主体间效应检验
    Table 3.  Inter subject effect test of average phosphorus recovery rate by high salt drainage
    实验号pHMg∶PN∶P磷回收率/%
    ABC
    181.001.0028.51
    281.501.5039.25
    382.002.0063.76
    482.504.0079.50
    591.001.5042.04
    691.501.0078.92
    792.004.0080.14
    892.502.0091.83
    9101.002.0049.33
    10101.504.0085.27
    11102.001.0088.88
    12102.501.5085.83
    13111.004.004.42
    14111.502.0020.44
    15112.001.5022.95
    16112.501.0028.33
    K152.7631.0856.16
    K273.2355.9747.52
    K377.3363.9356.34
    K419.0471.3762.33
    R58.2940.2914.81
    SS8 512.333 679.26446.06
     | Show Table
    DownLoad: CSV
    图 4  Kij与总磷回收率的关系
    Figure 4.  Relationship between Kij and total phosphorus recovery

    采用SPSS软件对实验数据进行了进一步分析,处理因素pH、Mg∶P摩尔比、N∶P摩尔比分别用A、B、C表示,并按顺序输入数值,建立对应数据库[53]。分析结果如表4所示。

    表 4  高盐排水磷平均回收率主体间效应检验
    Table 4.  Inter subject effect test of average phosphorus recovery rate by high salt drainage
    来源平方和自由度均方F显著性
    修正模型12 637.6491 404.1833.680.000
    截距49 439.52149 439.521 185.650.000
    A8 512.3332 837.4468.050.000
    B3 679.2531 226.4229.410.001
    C446.063148.683.570.087
    误差250.19641.70
    总计62 327.3516
    修正后总计12 887.8315
     | Show Table
    DownLoad: CSV

    表4中的方差分析结果可以看出,A和B 2个因素对实验结果有显著影响(P<0.001),即pH和Mg∶P摩尔比对磷回收的影响显著。N∶P(P>0.05)对磷回收无显著影响。处理因素影响顺序为A>B>C,这与前面极差分析得出的结论一致。SPSS单变量方差分析结果表明,当pH=10、n(Mg):n(P)=2.5∶1、n(N):n(P)=4∶1时,对应的磷回收率分别为77.33%、71.37%和62.33%,该组合即为最佳组合,该分析结果与极差分析结果一致。

    采用XRD和扫描电镜对反应产物进行了表征分析[54-55]图5(a)为pH=9、n(Mg)∶n(N)∶n(P)=1∶1∶1、转速100 r·min−1、反应时间20 min和温度25 ℃时,以MgCl2(图5(a))和高盐盐水(图5(b))分别作为镁源的沉淀产物扫描电镜图。由图5(a)可以发现,MgCl2作为镁源的沉淀产物晶体呈轴状,长度为100~200 μm,沉淀整体直观呈白色,有玻璃光泽,质地较脆,与卜凡等[56]和ZHANG等[57]对鸟粪石的表征结果相符。后续经XRD分析后,证明该沉淀物为鸟粪石[58-59]图5(b)为n(Mg)∶n(N)∶n(P)=1∶1∶1时高盐盐水的沉淀产物电镜图。由图5(b)中可以看到许多长条状结构,结构较紧密,与MgCl2镁源沉淀产物相比,该结构更为细长,放大观察发现表面附着许多细小的颗粒,具备鸟粪石基本结构。这些长条状结构周围有较多板快结构,初步断定为反应副产物[60]。除此之外,由图5(b)中还观测到“晶体粘连”现象,可推断是有机物的粘附作用所致[44]图5(c)为n(Mg)∶n(N)∶n(P)=1.9∶1∶1时高盐排水沉淀产物电镜图。由图5(c)中已经看不到“粘连”现象,生成的鸟粪石晶体形态优于镁磷摩尔比为1:1时的沉淀产物,更加与鸟粪石的形态吻合,印证了Mg2+含量对鸟粪石形态的影响。在图5(c)中还能观测到较多的不定形的磷酸钙晶体。其产生原因是,由于实验采用的高盐排水中Ca2+、Mg2+摩尔比为0.46,随反应进行会产生不定形的磷酸钙晶体,后续XRD衍射图谱中出现的宽峰同样证明了磷酸钙的存在。K+在高盐排水中占比较高,与Mg2+PO24PO42-结合生成MgKPO4·6H2O(MKP)[57]

    图 5  不同Mg∶P摩尔比条件下,不同镁源沉淀产物电镜图
    Figure 5.  SEM images of phosphorus precipitates from different magnesium sources under different Mg∶P molar ratios

    图6n(Mg)∶n(N)∶n(P)=1.9∶1∶1时的沉淀产物XRD图。在MgCl2作为镁源的沉淀产物XRD衍射图谱中,(016)、(021)、(027)、(032)和(033)几个尖峰位置与标准衍射图谱(图6(c))中尖峰位置基本一致(图6(b)),整体走势相似,可确定反应产物为鸟粪石。高盐排水镁源沉淀产物的XRD图谱整体走势与标准比对卡大致相似(图6(a)),但也存在着局部差异。尖峰出现的位置表明,沉淀产物中有鸟粪石的存在;但尖峰最高点比标准衍射图谱略高,一方面说明晶体状态较好,另一方面表明反应沉淀物中存在其他物质,尖峰(027)比标准衍射图谱中高许多,经分析为SiO2。其原因是,由于农田排水中粒径细小的粘土颗粒以硅酸盐矿物的形式附着在鸟粪石表面,致使其在沉淀物中被检测到。(021)~(033)处宽峰出现的位置也证明了该反应存在其他产物。通过Jade 6.5软件分析,20°~40°处出现的宽峰主要为钙的化合物,大量钙化合物的生成,致使20°~40°处宽峰的峰高急剧升高[54]。此现象产生的原因是:由于钙镁离子是同族元素,化学性质极其相似,与磷酸根结合生成磷酸钙、磷灰石等不溶于水的物质[47,59]。前述结果再一次验证了钙离子对磷的回收产生了较大的影响。从XRD和扫描电镜联合检测结果可推测,高盐盐水镁源沉淀产物主要为鸟粪石,并伴有磷酸钙、磷灰石和硅酸盐矿物等物质生成。

    图 6  MgCl2镁源和高盐排水镁源回收磷沉淀产物的XRD衍射图谱
    Figure 6.  XRD patterns of phosphorus precipitates recovered by magnesium sources of MgCl2 and high salt drainage

    以上研究结果表明,采用高盐排水为镁源可以实现与传统化学镁源相似的氮磷回收效率,磷回收率均在80%以上,所需高盐排水与模拟养殖废水体积之比约为1∶8,因此,不会产生严重的二次污染。目前,国内外对于MAP沉淀法相关研究多数集中在探究反应条件方面[8,13-15],对改善镁源方面的研究较少。本研究以寻求廉价镁源为出发点,与新疆高盐排水问题相结合,既充分利用了盐渍水中的镁源,又回收了养殖废水中的氮磷,所得鸟粪石可以制成肥料返入棉田,是一种可行的废物资源化利用模式。本研究得出的最佳组合为pH=10、n(Mg)∶n(P)=2.5、n(N):n(P)=4∶1。养殖废水中氨氮含量往往比磷含量高出2倍以上,可满足n(N)∶n(P)生成鸟粪石的基本要求,同时可以通过改变高盐排水投加量和投加浓度控制适宜的Mg与P的摩尔比。另外,根据中国化工网查询到工业级六水合氯化镁市价为300~900元·t−1不等。按照均价600元·t−1n(Mg)∶n(P)=1.9,处理1 m3磷含量为200 mg·L−1养殖废水,需投加2.46 kg MgCl2·6H2O,可生产1.59 kg鸟粪石,氯化镁成本为1 500元·t−1。相比之下,高盐排水成本低廉,回收鸟粪石价格在5 000~38 000元·t−1不等,TP回收率在85%以上时可产生较大的经济效益。综上所述,在新疆南疆地区以农田高盐排水为替代镁源回收养殖废水中氮磷具有广阔的应用前景。

    1) 当pH=9、温度25 ℃、n(N)∶n(P)=1∶1、转速100 r·min−1n(Mg)∶n(N)∶n(P)=1.9∶1∶1时,高盐排水对TP回收率可达83.85%;在相同质量浓度的Mg2+下,随pH升高,两者对TP回收率逐渐升高,并在pH为10时回收率均达到最大值,分别为86.42%和87.19%;高盐排水和MgCl2对TP的回收效果相似,但高盐排水回收磷所需的体系pH比MgCl2溶液略高。

    2) HCO3SO24对磷回收表现为抑制作用,Ca2+对磷回收表现为促进作用,K+、Na+、Cl对磷回收的影响较小。

    3) pH、Mg∶P摩尔比、N:P摩尔比是高盐排水回收磷的重要因素,影响的主次因素为RPH>RMg∶P>RN∶P。本研究中高盐排水回收磷的最佳组合条件为pH=10、n(Mg)∶n(P)=2.5、n(N)∶n(P)=4。

    4) 不同Mg2+含量的农田排水镁源对氮磷的回收产物中均观测到了鸟粪石晶体的存在。与MgCl2镁源的沉淀产物相比,含低浓度Mg2+的农田排水回收产物中晶体呈细长轴状,存在有机物的粘连现象;而含高浓度Mg2+的农田排水回收产物中鸟粪石晶体形态与MgCl2镁源相似。因此,采用农田高盐排水回收养殖废水中的氮磷,可为替代MAP沉淀法中大规模使用的商业镁源产品提供一种新思路,也可在一定程度上缓解水体盐渍化的环境问题。

  • 图 1  太阳能热解装置

    Figure 1.  Solar pyrolysis device

    图 2  生物质的TG-DTG曲线图

    Figure 2.  TG and DTG curves of biomass

    图 3  太阳能热解制备生物炭过程中辐射强度及反应器内温度变化

    Figure 3.  Variation of solar radiation and temperature in the reactor during the biochar preparation by solar pyrolysis

    图 4  生物质热解前后的扫描电镜图

    Figure 4.  SEM images of biomass before and after different pyrolysis processes

    图 5  生物炭的氮气吸附-解吸曲线

    Figure 5.  N2 adsorption-desorption curve of biochar

    图 6  原料及生物炭的红外光谱图

    Figure 6.  FT-IR spectra of biomass and biochar

    图 7  溶液pH对吸附效果的影响

    Figure 7.  Effect of solution pH on adsorption effect

    图 8  生物炭对Cu2+的等温吸附模型

    Figure 8.  Adsorption isotherms of Cu2+ on biochar

    图 9  生物炭对水溶液中Cu2+的吸附动力学数据和拟合模型

    Figure 9.  Adsorption kinetics data and fitting models of Cu2+ in aqueous solution by biochar

    图 10  生物炭吸附Cu2+后的EDS图谱

    Figure 10.  EDS images of biochars after Cu2+ adsorption

    图 11  生物炭在吸附Cu2+前后的红外光谱

    Figure 11.  FT-IR spectra of biochar before and after Cu2+ adsorption

    表 1  生物炭的孔隙结构及产率

    Table 1.  Pore structures and yields of biochar

    样品SBET/(m2·g−1)Vtotal/ (m3·g−1)平均孔径/nm产率/%
    CJ29.445 40.046 97.334 332.8
    CN8.348 00.020 78.820 870.7
    TJ30.717 60.069 26.146 330.8
    TN10.715 70.021 78.095 467.3
    样品SBET/(m2·g−1)Vtotal/ (m3·g−1)平均孔径/nm产率/%
    CJ29.445 40.046 97.334 332.8
    CN8.348 00.020 78.820 870.7
    TJ30.717 60.069 26.146 330.8
    TN10.715 70.021 78.095 467.3
    下载: 导出CSV

    表 2  生物炭吸附铜离子等温线模型的拟合参数

    Table 2.  Fitting parameters for isotherm models of Cu2+ adsorption onto biochar

    生物炭Langmuir模型Freundlich 模型
    qmKR2KfnR2
    TJ25.8112.350.998 56.220.280.922 8
    CJ25.926.670.995 48.430.230.921 6
    TN17.4811.110.884 24.640.260.985 4
    CN16.775.880.808 05.900.220.979 9
    生物炭Langmuir模型Freundlich 模型
    qmKR2KfnR2
    TJ25.8112.350.998 56.220.280.922 8
    CJ25.926.670.995 48.430.230.921 6
    TN17.4811.110.884 24.640.260.985 4
    CN16.775.880.808 05.900.220.979 9
    下载: 导出CSV

    表 3  生物炭吸附Cu2+动力学模型的拟合数据

    Table 3.  Fitting parameters for kinetics models of Cu2+ adsorption onto biochar

    生物炭准一级动力学准二级动力学颗粒内扩散
    k1qeR2k2qeR2kipCR2
    TJ0.10323.540.956 90.04123.810.999 67.6043.7640.941 7
    CJ0.10824.270.942 50.04324.390.999 18.2703.3700.944 3
    TN0.10317.400.963 60.03117.850.998 54.8111.3650.962 1
    CN0.10817.730.954 60.03118.100.997 84.2332.1280.980 5
    生物炭准一级动力学准二级动力学颗粒内扩散
    k1qeR2k2qeR2kipCR2
    TJ0.10323.540.956 90.04123.810.999 67.6043.7640.941 7
    CJ0.10824.270.942 50.04324.390.999 18.2703.3700.944 3
    TN0.10317.400.963 60.03117.850.998 54.8111.3650.962 1
    CN0.10817.730.954 60.03118.100.997 84.2332.1280.980 5
    下载: 导出CSV
  • [1] 陈贵英, 李维, 陈顺德, 等. 环境铜污染影响及修复的研究现状综述[J]. 绿色科技, 2011, 1(12): 125-128. doi: 10.3969/j.issn.1674-9944.2011.12.059
    [2] 邹照华, 何素芳, 韩彩芸, 等. 吸附法处理重金属废水研究进展[J]. 环境保护科学, 2010, 36(3): 35-39. doi: 10.3969/j.issn.1004-6216.2010.03.012
    [3] TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125(4): 70-85.
    [4] MANYÀ J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954.
    [5] ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833.
    [6] ZENG K, GAUTHIER D, SORIA J, et al. Solar pyrolysis of carbonaceous feedstocks: A review[J]. Solar Energy, 2017, 156(11): 73-92.
    [7] MORALES S, MIRANDA R, BUSTOS D, et al. Solar biomass pyrolysis for the production of bio-fuels and chemical commodities[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109(9): 65-78.
    [8] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107
    [9] KOŁODYŃSKA D, WNĘTRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(1): 295-305.
    [10] QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121(1): 84-92.
    [11] 朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289. doi: 10.3321/j.issn:0254-0096.2006.12.018
    [12] DHYANI V, BHASKAR T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129(5): 695-716.
    [13] SHINOGI Y, KANRI Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology, 2003, 90(3): 241-247. doi: 10.1016/S0960-8524(03)00147-0
    [14] CHANG K, ZHANG Q Y. Improvement of the hourly global solar model and solar radiation for air-conditioning design in China[J]. Renewable Energy, 2019, 138(6): 1232-1238.
    [15] LIAN F, HUANG F, CHEN W, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. doi: 10.1016/j.envpol.2011.01.002
    [16] CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052
    [17] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107(1): 419-428.
    [18] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
    [19] BRUUN E W, AMBUS P, EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46(1): 73-79.
    [20] CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291.
    [21] XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50(1): 136-141.
    [22] PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229(1): 846-853.
    [23] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb(Ⅱ)、Cd(Ⅱ)的吸附[J]. 农业环境科学学报, 2015, 34(5): 45-48.
    [24] LIN D C, SHI M, ZHANG Y M, et al. 3D crateriform and honeycomb polymer capsule with nano re-entrant and screen mesh structures for the removal of Multi-component cationic dyes from water[J]. Chemical Engineering Journal, 2019, 375(1): 119-121.
    [25] TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834.
    [26] CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078
    [27] 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857.
    [28] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5
    [29] SONG J, HE Q, HU X, et al. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem[J]. Environmental Science and Pollution Research, 2019, 26(13): 13221-13234. doi: 10.1007/s11356-019-04863-2
    [30] FANG C, ZHANG T, LI P, et al. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater[J]. International Journal of Environmental Research and Public Health, 2014, 11(9): 9217-9237. doi: 10.3390/ijerph110909217
    [31] JIAN X, ZHUANG X, LI B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10(2): 27-35.
    [32] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2013, 99(3): 19-33.
    [33] CHEN Z L, ZHANG J Q, HUANG L, et al. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. Journal of Integrative Agriculture, 2019, 18(1): 201-210. doi: 10.1016/S2095-3119(18)61987-2
    [34] WANG X S, MIAO H H, HE W, et al. Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon[J]. Journal of Chemical & Engineering Data, 2011, 56(3): 444-449.
    [35] HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556.
    [36] JALAYERI H, PEPE F. Novel and high-performance biochar derived from pistachio green hull biomass: Production, characterization, and application to Cu(II) removal from aqueous solutions[J]. Ecotoxicology and Environmental Safety, 2019, 168(1): 64-71.
    [37] KING P, RAKESH S, BEENA L, et al. Biosorption of zinc onto Syzygium cumini L.: Equilibrium and kinetic studies[J]. Chemical Engineering Journal, 2008, 144(2): 181-187. doi: 10.1016/j.cej.2008.01.019
  • 加载中
图( 11) 表( 3)
计量
  • 文章访问数:  7372
  • HTML全文浏览数:  7372
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-01
  • 录用日期:  2020-03-01
  • 刊出日期:  2020-11-10
常全超, 杜玉凤, 戴敏, 林帝出, 彭昌盛. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
引用本文: 常全超, 杜玉凤, 戴敏, 林帝出, 彭昌盛. 太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
CHANG Quanchao, DU Yufeng, DAI Min, LIN Dichu, PENG Changsheng. Biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004
Citation: CHANG Quanchao, DU Yufeng, DAI Min, LIN Dichu, PENG Changsheng. Biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2946-2958. doi: 10.12030/j.cjee.201912004

太阳能热解制备生物炭及其对水中铜离子的吸附

    通讯作者: 彭昌盛(1972—),男,博士,副教授。研究方向:环境新材料。E-mail:pcs005@ouc.edu.cn
    作者简介: 常全超(1995—),男,硕士研究生。研究方向:水污染控制。E-mail:changquanchao@126.com
  • 1. 中国海洋大学环境科学与工程学院,青岛 266100
  • 2. 肇庆学院环境与化学工程学院,肇庆 526061
基金项目:
国家自然科学基金-山东省政府联合基金重点项目(U1806210);肇庆市2018年省科技创新战略专项资金项目(2018N006)

摘要: 当前生物炭的制备主要依赖以电力为热源的传统热解方式,存在能耗高、污染大等问题,在一定程度上限制了生物炭作为吸附材料在工业水处理领域中的应用。为寻求生物炭制备的新途径,以玉米秸秆、牛粪为原料,采用太阳能热解技术制备生物炭,并与传统热解方式制备的生物炭进行了比较,考察了两者在理化性质和吸附性能上的差异。结果表明,经不同热解工艺所制备的相同生物炭材料的比表面积和微观形貌基本相同,理化性质相似。其中:玉米秸秆生物炭在最佳pH=6的条件下对Cu2+的吸附符合Langmuir等温吸附模型,最大吸附容量约为25.87 mg·g−1;牛粪生物炭对Cu2+的吸附符合Freundlich等温吸附模型,两者均符合准二级动力学模型。综合上述结果,太阳能热解技术作为制备生物炭材料的新工艺,其制备的生物炭材料可成功应用于水中重金属离子的去除。

English Abstract

  • 重金属污染问题是当今世界面临的主要环境问题之一。近年来,随着我国工业化的逐步发展,矿山开采、电镀工业和金属加工等行业每年产生大量酸性废水,每升废水中铜浓度高达几十至几百毫克,如不加处理排放到水体会造成严重的污染问题。水体中的Cu2+被普遍认为是铜对水生生物致毒的主要离子形式[1],水生生物受水体中Cu2+污染毒害并在体内富集,通过生物放大过程进入食物链,最终威胁到人体健康。为控制天然水体不被铜离子污染,污水综合排放标准(GB 8978-1996)规定,工业废水中铜及其化合物最高容许排放浓度为1 mg·L−1(按铜计),因此,采取合理有效的方式处理重金属废水是当务之急。

    目前,常见的重金属废水处理方法包括化学沉淀法、膜分离、电渗析、离子交换、吸附法等,其中吸附法以其操作简单、效率高、成本低和无二次污染等优点已被广泛采用[2]。生物炭由于孔隙结构发达、比表面积大及表面官能团丰富等特点,对水体中污染物有较好的去除效果[3],且其原料成本低、来源广,被认为是一种新型环保吸附剂。以秸秆及畜禽粪便等农牧业废弃物为原料制备生物炭,不仅将废弃物资源化利用,而且所制备的生物炭能有效地修复污染水体,是一种“双赢”处理模式。生物炭对水体中重金属的去除效果与其比表面积、孔径分布、表面官能团及分子组成等性质有关,采用不同生物炭制备工艺的热解过程参数不同,得到生物炭的性质也存在较大差异[4]。应用在水处理中的生物炭大多采用慢速热解这一制备方法,产生的生物炭比表面积较大,孔隙发育较好,有利于对污染物的吸附。然而,慢速热解等主流热解工艺主要依靠电力加热提供生物质热解所需能量,热解过程存在高能耗和高污染等问题,增加了生物炭生产成本,不利于生物炭吸附材料的工业化应用[5]。太阳能热解技术以生物质材料为反应物,利用太阳能提供高温热解反应过程所需能量[6]。与传统热解技术相比,其可减少能源消耗,间接降低了温室气体排放,是一种节能环保的新技术。目前,利用太阳能热解制备生物炭的研究集中于太阳能直接辐射生物质原料,在快速热解条件下产生更多生物油及合成气,研究产物在生物燃料方面的应用[7]。生物炭作为太阳能热解生物质的一种副产物,因其具有产量低和性能差的缺点,故较少在水污染领域的研究应用。

    本研究使用新型太阳能装置,以真空集热管为反应器,采用槽式聚光器聚焦太阳辐射,利用太阳能为热源将玉米秸秆和牛粪2种原料热解制备成生物炭,对其进行分析表征和吸附Cu2+静态实验,对比其与传统热解方式制备的生物炭在理化性质和吸附性能上的差异,从而验证太阳能热解制备生物炭在水处理领域的可行性,探究了玉米秸秆及牛粪生物炭对水中Cu2+的吸附特性和机制,以期为生物炭在重金属废水处理中的应用提供参考。

  • 图1所示,太阳能热解装置(HGC-0.8/6.5Kz,皇明)主要包括太阳能聚光器、管式反应器和太阳追踪系统3个部分。聚光器为槽式聚光器,其将太阳辐射线状聚焦,是加热管状反应器的理想选择;管式反应器为真空吸热管,吸热管内层为铜管,外层为透明石英玻璃管,2层之间为真空结构,铜管外侧涂有太阳能吸收涂层,能吸收太阳辐射并转化为热量使反应器升温;太阳追踪系统包括光敏电阻及动力装置,通过光敏电阻,调动动力装置在水平和竖直方位上移动,使聚光器在1 d内垂直接收太阳辐射,确保热解反应稳定进行;太阳能功率计(SM206-SOLAR,欣宝科技)用以测量地面实时直接辐射强度,热电偶温度计(UNI-T325,优利德)测量热解过程反应器内的温度。传统热解使用真空管式炉(SLG1200-60,上海升利)制备生物炭材料,选择原料包括玉米秸秆和牛粪2种。玉米秸秆(J)采自山东省菏泽市周边农田,牛粪(N)取自河南周口某养殖场。

  • 将2种原料用蒸馏水冲洗3次后,用电热鼓风干燥箱(DHG-9023A,上海精宏)105 ℃下烘干至恒重,粉碎过35目筛,储存在干燥器中备用。太阳能热解生物质步骤如下:在晴朗天气,选择可接收太阳照射的开阔地带放置太阳能热解设备;用坩埚盛放2种生物质原料,并将其放于热解反应器中,打开聚光器接收太阳辐射;反应器接收辐射热量开始升温,热解过程持续2 h后,关闭聚光器;待反应器内温度降至室温后,将生物炭取出,记录实验过程中太阳辐射强度和装置温度变化,其中玉米秸秆生物炭标记为TJ,牛粪生物炭为TN。传统方式制备的生物炭采用慢速热解法[8],利用真空管式炉,按照太阳能热解过程中温度变化条件设定最高温度为430 ℃、升温速率为8 ℃·min−1。热解制备出的玉米秸秆及牛粪生物炭分别标记为CJ和CN,将制备出的所有生物炭储存在干燥器中备用。

  • 采用热重分析仪(TG209F3,Tarsus)对原料进行热重分析,在升温速率10 ℃·min−1、氮气流速300 mL·min−1、温度为30~1 000 ℃条件下,观察热重曲线,并利用差热分析法得出DTG曲线。利用场发射扫描电子显微镜(SU8200,HITACHI)放大1 000倍,在比例尺为50 μm下观察生物炭表面形貌结构,额定扫描电压为8.0 kV。生物炭的比表面积、孔体积及孔径采用BET法(GB/T 19587-2004)测定,使用比表面与孔隙度分析仪(ASAP 2460,Micromeritics)测定孔隙,吸附介质为液氮。使用KBr压片法在傅里叶变换红外光谱仪(TENSOR27,Bruker)上测试生物炭的透射红外光谱,干燥样品与KBr以质量比1∶200混合,研磨均匀进行压片测试,波数为4 000~400 cm−1,分辨率为2 cm−1,扫描16次。

  • 生物炭对铜离子的吸附实验采用批量平衡法。利用Cu(NO3)2·3H2O(AR)配置1 000 mg·L−1 的Cu2+溶液作为储备液,分别称取(0.100±0.005) g玉米秸秆生物炭和牛粪生物炭,投入到盛有Cu2+溶液的锥形瓶中,向溶液中加入0.01 mol·L−1的NaNO3作为背景电解质。实验用水均为蒸馏水,吸附实验在室温25 ℃下进行,每组吸附实验设3个平行和空白处理(生物炭+H2O),溶液中Cu2+浓度采用ICP-MS(Nexlon 350X,PerkinElmer)测定。

    在考察pH对吸附的影响时,称取0.1 g生物炭于100 mL锥形瓶中,加入50 mL 100 mg·L−1的Cu2+溶液,使用0.1 mol·L−1的NaOH和HNO3溶液调节pH为1、2、3、4、5、6,以150 r·min−1振荡24 h后离心、过滤,测定溶液中Cu2+的浓度,再通过式(1)计算生物炭对Cu2+的吸附量。

    式中:qe为吸附量,mg·g−1c0ce分别为Cu2+的初始浓度和吸附平衡浓度,mg·L−1V为溶液体积,L;m为生物炭质量,g。

    在进行吸附等温实验时,称取0.1 g生物炭于100 mL锥形瓶中,向锥形瓶中加入50 mL质量浓度分别为20、40、80、120、150、200 mg·L−1的Cu2+溶液,在25 ℃下以转速150 r·min−1振荡24 h,离心、过滤,测定溶液中的Cu2+浓度。分别用Langmuir(式(2))和Freundlich(式(3))吸附等温模型拟合4种生物炭在25 ℃下对Cu2+的吸附等温线。

    式中:ce为吸附平衡是溶液浓度,mg·L−1qe为平衡时生物炭的吸附量,mg·g−1k为材料对重金属亲和力的常数,L·mg−1qm为最大吸附量,mg·g−1kf为吸附容量,mg·g−1n为吸附强度,g·L−1

    在进行吸附动力学实验时,取100 mL初始质量浓度为50 mg·L−1的Cu2+于锥形瓶中,称取0.1 g生物炭加入到锥形瓶,吸附时间设置为15、30、60、120、240、480、960、1 440、2 880 min。于25 ℃以150 r·min−1振荡,离心、过滤,测定溶液中Cu2+浓度。采用准一级动力学(式(4))、准二级动力学(式(5))和颗粒内扩散模型[9](式(6))对吸附动力学数据进行拟合分析,进而比较2种生物炭吸附速率的差异及其对应的吸附机制。

    式中:t为反应时间,h;qt代表t时的吸附量,mg·g−1qe代表平衡吸附量,mg·g−1k1为准一级吸附速率常数,min−1k2为准二级吸附速率常数,g·(mg·min)−1kip为颗粒内扩散速率常数,mg·(g·min0.5)−1C为常数。

  • 为研究原料中各组分的热解特性,分别对2种原料进行了热重分析。玉米秸秆和牛粪中含有相同的木质素、纤维素等有机成分,其热解过程表现出一定的相似性[10]。由图2可知,2种原料的热解过程大体可分为3个阶段。第1阶段为脱水干燥阶段(30~130 ℃),水分和少量挥发性物质的蒸发散失;第2阶段为主要热解阶段(210~410 ℃),生物质中含有的纤维素、半纤维素等有机物发生分解,分解产物以挥发性物质为主,其中包括H2、CH4、CO2、CO等不可凝结气体和产物冷凝形成的生物油(复杂含氧有机化合物与水的混合物)[11],该阶段生物质的失重速率迅速升高,玉米秸秆在330 ℃失重速率达到峰值,牛粪在310 ℃时失重速率最大,在该阶段玉米秸秆失重率达70%,牛粪重量损失35%左右[12]。第3阶段为炭化阶段(410 ℃以后),原料进一步热解炭化,热损失速率逐渐降低,生物质炭化程度进一步加深。牛粪中含有较多灰分,大部分灰分物质在温度升高过程中不断矿化积累,导致剩余固体质量占比较高[13]

    结合2种原料热解特性和太阳能热解装置能实现的温度条件,选择在炭化阶段以430 ℃对生物质进行热解。为确保太阳能热解过程中温度保持稳定,选择天气状况好,云层相对较少的晴朗天气进行热解实验。青岛地区晴朗天气地面太阳辐射强度为800~1 400 W·m−2[14]图3为太阳能热解制备生物炭过程中太阳辐射强度和装置温度的变化。可以看出,制备过程中的最高温度为430 ℃,升温速率约为8 ℃·min−1,热解过程持续时间为2 h。

  • 为探究生物质热解前后表面形貌的变化,对比不同热解方式下生物炭表面形貌的差异,本研究对2种材料热解前后的样品进行扫描电镜表征。由图4可见:玉米秸秆和牛粪经热解后表面形貌发生了明显的变化。玉米秸秆炭化后表面变得光滑,炭架结构更加明显,生物炭孔隙结构发达,大小孔隙相间分布,其表面的大孔一般为植物组织固有的细胞结构,而小孔径的孔洞是由纤维素、半纤维素等有机物质热解散失所形成的[15];牛粪经热解后表面粗糙度增加,生物炭表层相对不规整,同时形成一些管状孔结构。牛粪中包含粗纤维、蛋白质和无机矿物等组分,物质组成相对较为复杂,植物成分热解产生的部分多孔结构中孔隙相对不完整,无机矿物成分的炭化积累增加了生物炭表面粗糙度[16]。采用不同的热解方式对生物炭表面结构的影响较小,生物质本身结构性质对生物炭表面形貌有较大影响,尽管通过扫描电镜可以对生物炭的表面形貌进行了直观观察,但生物炭的比表面积、孔径分布和孔体积等特征须采用BET方法进行表征和分析。

  • 为进一步比较生物炭之间的孔隙结构差异,分析不同原料和热解方式对生物炭孔隙结构的影响,本研究对4种生物炭进行了比表面积和孔径分析测试,结果如图5所示。根据IUPAC(1985)分类,4种材料的氮气等温吸附-脱附曲线符合Ⅱ型,其属于多孔介质表面发生多层吸附的情况。

    表1为在2种热解方式下所制备出生物炭的孔隙特征(比表面积、总孔体积及平均孔径)数据。太阳能热解所制备的生物炭的比表面积(TJ=30.72 m2·g−1、TN=10.72 m2·g−1)和孔容略高于传统热解方式下制备的生物炭材料(CJ=29.45 m2·g−1、CN=8.35 m2·g−1),生物炭的平均孔径后者较大。相比于热解方式,原料种类对生物炭孔隙结构起着更为重要的作用,玉米秸秆生物炭的比表面积和孔容均明显高于牛粪生物炭。玉米秸秆自身维管束结构加上热解过程挥发分物质大量分解逸出是导致生物炭孔隙结构发达的原因;然而,牛粪中含有较多的无机矿物成分,根据已有研究[17]结果,无机矿物会在高温下熔融并填充生物炭中的孔隙,导致其比表面积的下降,生物炭的比表面积与无机矿物组分含量成负相关关系。

  • 为评价不同热解方式和制备原料对生物炭表面官能团的影响,本研究采用FT-IR对热解前后的样品进行了表征,结果如图6所示。相同原料经不同热解方式所制备的生物炭的特征吸收峰的位置和数量基本相同,即生物炭表面官能团的种类和丰富程度较为接近。在热解前后部分特征吸附峰的强度变化较大,原因在于热解过程中物质组分的变化引起相应表面官能团数量的相对减少或增加。

    玉米秸秆和牛粪在3 400 cm−1左右处较宽的吸收峰是由酚式羟基O—H伸缩振动产生的,其对应的峰强度在热解后大幅度减小。在2 918~2 925 cm−1的吸收峰是由纤维素等高分子聚合物中脂肪碳链的C—H伸缩振动产生的。由于热解过程中脂肪族化合物不断降解,生物炭中该吸收峰强度减弱甚至消失。在1 580~1 650 cm−1处为木质素结构中的芳香族C=C的特征吸收峰[18],玉米秸秆经热解后,该特征峰发生偏移,峰值变大,即芳香化程度加剧,牛粪经热解后,该峰强度明显减小。玉米秸秆在1 350~1 420 cm−1处为羧基对应的C=O及C—O伸缩振动峰[19],右侧C—O振动峰在热解后消失,左侧C=O振动峰在热解后位置发生偏移,峰强度没有明显的变化。据已有研究[20]证明:羧基中C=O键一般经500 ℃以上高温热解后会显著减少;牛粪中位于1 421 cm−1的振动峰可能与CO23有关,热解后峰强度有所增加。玉米秸秆在1 045 cm−1附近为糖单元中O—H和C—O伸缩振动所产生[21],经热解后,峰强度明显降低;牛粪在970~1 053 cm−1附近的振动峰与PO34有关[22],经热解后,吸收峰的位置发生了明显偏移。2种原料在位于460 cm−1附近为Si—O伸缩振动产生的吸收峰[23],经热解后,峰强度增大,牛粪中含有碳酸盐、磷酸盐和硅酸盐等无机矿物在一定温度下易发生结晶作用而不断累积,对应特征峰的峰强度在热解后增强。

  • 为探究溶液初始pH对生物炭吸附Cu2+的影响,将Cu2+溶液的初始pH设置为1.0~6.0,进行吸附实验,结果如图7所示。采用2种热解方式制备的生物炭在不同pH条件下对Cu2+吸附效果差别不大。4种生物炭对Cu2+的吸附能力随pH的增加而不断升高,在pH为1~4时,随着pH的升高,生物炭对Cu2+吸附量迅速增加;当pH>4时,吸附量逐渐趋于平稳。玉米秸秆生物炭对Cu2+的吸附能力优于牛粪生物炭。pH越低,溶液中H+浓度越高,大量的H+会与Cu2+竞争生物炭表面有限的吸附位点[24],导致pH较低时生物炭对Cu2+吸附能力不强。随pH的升高,生物炭表面官能团如—COOH、—OH等的解离增加,与Cu2+反应生成表面络合物的能力增强[25]

  • 生物炭对Cu2+的吸附等温过程如图8所示。可以看出,生物炭对Cu2+的吸附量随着Cu2+平衡浓度的增加,呈现先增大后逐渐稳定的趋势,4种生物炭对Cu2+的吸附能力大小顺序为CJ>TJ>TN>CN,玉米秸秆生物炭(TJ、CJ)对Cu2+的吸附能力大于牛粪生物炭(TN、CN)。为进一步研究生物炭对Cu2+的等温吸附特性,采用Langmuir和Freundlich模型对等温吸附数据进行拟合(图8),拟合参数如表2所示。

    对于玉米秸秆生物炭对Cu2+的吸附,Langmuir方程的拟合相关度更高,R2分别为0.998 5和0.995 4,Langmuir模型更适合描述玉米秸秆生物炭对Cu2+的吸附过程,表明生物炭对Cu2+为单分子层吸附[26],TJ和CJ的理论最大吸附量分别为25.81 mg·g−1和25.92 mg·g−1;牛粪生物炭对铜离子的吸附更适用Freundlich模型(R2为0.979 9~0.985 4),说明生物炭对Cu2+主要为多层异相吸附[27]。另外,采用太阳能热解方式不仅减少了传统电力热解中的能耗,从而间接减少了温室气体的排放,而且太阳能热解制备出生物炭材料吸附性能与传统管式炉所制备出生物炭的表面形貌、比表面积、官能团种类等理化性质相似,对Cu2+的吸附性能较为接近,这种节能环保型工艺符合未来热解炭化技术发展的方向。

  • 本研究通过吸附动力学实验找出了生物炭对Cu2+的吸附量与吸附时间之间的关系,掌握生物炭对Cu2+的吸附效率,为实际水处理工艺设计和操作提供参考。如图9(a)所示,2种热解方式下所制备的生物炭对Cu2+吸附动力学数据的变化趋势一致。在吸附过程中,4种生物炭对Cu2+的吸附速率均为前期较快,前8 h的吸附量占总吸附量的85%左右,之后吸附速率有所下降,24 h内吸附基本达到了平衡。在吸附过程的初期,生物炭表面具有丰富的孔道和官能团结构可提供较多的吸附结合位点[28],有利于对Cu2+的快速吸附,随着反应的不断进行,活性位点逐渐减少、离子间静电斥力[29]增强使得吸附反应难以继续进行,故吸附逐渐达到平衡。

    为研究吸附机制,本研究采用一级动力学、二级动力学及颗粒内扩散模型对4种生物炭吸附动力学数据进行拟合,拟合结果如图9所示。由表3的拟合数据结果可知:在4种生物炭对Cu2+的吸附数据的拟合结果中,二级动力学拟合的可决系数高于一级动力学和颗粒内扩散的对应数值。这表明二级动力学模型更适合描述4种生物炭对Cu2+的吸附动力学过程,4种生物炭对Cu2+的吸附过程主要受化学吸附的控制[30],其中速率常数k2反映了生物炭吸附Cu2+的速率,TJ和CJ均具有较大的k2值,能较早达到吸附平衡。由颗粒内扩散模型的拟合数据可知,其拟合结果并非为一条过原点的直线,这说明颗粒内扩散为生物炭吸附Cu2+速率控制的步骤之一,此外还存在表面吸附等共同控制吸附反应速率[31]

  • 生物炭吸附重金属的主要机制包括静电吸引、表面络合、物理吸附和沉淀作用等,这些不同的吸附行为与生物炭自身的结构组成和理化性质相关[32]。本研究采用2种不同的热解方式制备的生物炭在表征结果和对Cu2+的吸附特性上没有明显的差异。然而,2种不同的原料所制备出的生物炭在理化性质和对Cu2+的吸附效果上存在较大的区别。因此,以太阳能热解2种原料所制备的TJ和TN生物炭为例,对其吸附Cu2+后的样品进行EDS分析,结果如图10所示。玉米秸秆生物炭(TJ)表面主要富含碳、氧、硅等元素,牛粪生物炭(TN)表面除含有碳、氧、硅、磷元素之外,钙、镁和铝等无机金属元素的含量相对丰富,表明其含有大量磷酸盐、碳酸盐、硅酸盐等无机矿物成分[33],此外,吸附后的生物炭表面均有明显的铜元素存在。

    对比生物炭吸附Cu2+前后的FT-IR图谱(图11)可知,玉米秸秆生物炭在吸附前位于3 363 cm−1处的—OH特征峰和1 409 cm−1处的—COOH吸收峰在吸附后分别偏移至3 323 cm−1和1 427 cm−1处。这表明羧基、酚羟基参与了Cu2+的吸附反应过程,其主要通过表面络合反应吸附Cu2+,络合反应的发生改变了官能团的结构,从而致使光谱中对应吸收峰的位置发生偏移[34]。位于1 578 cm−1处的C=C吸附后偏移至1 583 cm−1处,说明在吸附过程中可能存在阳离子-π作用[35]。此外,Si—Cu表面沉淀作用使得红外光谱中位于460 cm−1处的Si—O振动峰偏移至468 cm−1处。对比牛粪生物炭吸附前后红外谱图可知,除3 363 cm−1处的—OH吸收峰和460 cm−1处的Si—O吸收峰发生偏移外,在1 425 cm−1处,与CO23有关的吸收峰偏移至1 433 cm−1处,与PO34相关的吸收峰从1 016 cm−1偏移至1 023 cm−1处。在吸附过程中,玉米秸秆生物炭中的含氧官能团、矿物成分及芳香性π电子都为Cu2+提供吸附位点[36],在牛粪生物炭中矿物组分与Cu2+之间形成Cu—P、Cu—C、Cu—Si等沉淀,这是吸附过程的主导机制[37]

  • 1)以玉米秸秆和牛粪为原料制备的生物炭在结构性质上较为不同,玉米秸秆生物炭的孔隙结构发达、比表面积较大,具有羟基、羧基等官能团和芳香化结构;牛粪生物炭表面粗糙,孔隙发育较差,其含有较多无机矿物成分,其中的碳酸盐、磷酸盐和硅酸盐矿物居多。

    2)玉米秸秆生物炭和牛粪生物炭在对Cu2+的吸附特性上存在差异。在最佳pH=6的条件下,玉米秸秆生物炭对Cu2+的吸附等温线符合Langmuir模型,牛粪生物炭符合Freundlich模型,前者对Cu2+的吸附性能优于后者;两者对Cu2+的吸附动力学数据均符合二级动力学模型,表明其对Cu2+的吸附速率主要受化学吸附控制;表面官能团的络合、阳离子-π作用和沉淀反应是玉米秸秆生物炭吸附Cu2+过程的主要机制,而牛粪生物炭吸附Cu2+过程的主导机制可能是沉淀作用。

    3)采用太阳能热解与传统热解方式所制备出的生物炭在表面形貌、比表面积、孔隙结构和官能团种类等方面的性质相似,对水中的Cu2+的去除效果接近。这表明采用的太阳能热解方式与传统电热解方式在制备生物炭吸附材料方面的效用相同,为节能环保型生物炭材料的制备提供了一种全新的工艺。

参考文献 (37)

返回顶部

目录

/

返回文章
返回