-
重金属污染问题是当今世界面临的主要环境问题之一。近年来,随着我国工业化的逐步发展,矿山开采、电镀工业和金属加工等行业每年产生大量酸性废水,每升废水中铜浓度高达几十至几百毫克,如不加处理排放到水体会造成严重的污染问题。水体中的Cu2+被普遍认为是铜对水生生物致毒的主要离子形式[1],水生生物受水体中Cu2+污染毒害并在体内富集,通过生物放大过程进入食物链,最终威胁到人体健康。为控制天然水体不被铜离子污染,污水综合排放标准(GB 8978-1996)规定,工业废水中铜及其化合物最高容许排放浓度为1 mg·L−1(按铜计),因此,采取合理有效的方式处理重金属废水是当务之急。
目前,常见的重金属废水处理方法包括化学沉淀法、膜分离、电渗析、离子交换、吸附法等,其中吸附法以其操作简单、效率高、成本低和无二次污染等优点已被广泛采用[2]。生物炭由于孔隙结构发达、比表面积大及表面官能团丰富等特点,对水体中污染物有较好的去除效果[3],且其原料成本低、来源广,被认为是一种新型环保吸附剂。以秸秆及畜禽粪便等农牧业废弃物为原料制备生物炭,不仅将废弃物资源化利用,而且所制备的生物炭能有效地修复污染水体,是一种“双赢”处理模式。生物炭对水体中重金属的去除效果与其比表面积、孔径分布、表面官能团及分子组成等性质有关,采用不同生物炭制备工艺的热解过程参数不同,得到生物炭的性质也存在较大差异[4]。应用在水处理中的生物炭大多采用慢速热解这一制备方法,产生的生物炭比表面积较大,孔隙发育较好,有利于对污染物的吸附。然而,慢速热解等主流热解工艺主要依靠电力加热提供生物质热解所需能量,热解过程存在高能耗和高污染等问题,增加了生物炭生产成本,不利于生物炭吸附材料的工业化应用[5]。太阳能热解技术以生物质材料为反应物,利用太阳能提供高温热解反应过程所需能量[6]。与传统热解技术相比,其可减少能源消耗,间接降低了温室气体排放,是一种节能环保的新技术。目前,利用太阳能热解制备生物炭的研究集中于太阳能直接辐射生物质原料,在快速热解条件下产生更多生物油及合成气,研究产物在生物燃料方面的应用[7]。生物炭作为太阳能热解生物质的一种副产物,因其具有产量低和性能差的缺点,故较少在水污染领域的研究应用。
本研究使用新型太阳能装置,以真空集热管为反应器,采用槽式聚光器聚焦太阳辐射,利用太阳能为热源将玉米秸秆和牛粪2种原料热解制备成生物炭,对其进行分析表征和吸附Cu2+静态实验,对比其与传统热解方式制备的生物炭在理化性质和吸附性能上的差异,从而验证太阳能热解制备生物炭在水处理领域的可行性,探究了玉米秸秆及牛粪生物炭对水中Cu2+的吸附特性和机制,以期为生物炭在重金属废水处理中的应用提供参考。
太阳能热解制备生物炭及其对水中铜离子的吸附
Biochar prepared by solar pyrolysis and its adsorption of copper ions in water
-
摘要: 当前生物炭的制备主要依赖以电力为热源的传统热解方式,存在能耗高、污染大等问题,在一定程度上限制了生物炭作为吸附材料在工业水处理领域中的应用。为寻求生物炭制备的新途径,以玉米秸秆、牛粪为原料,采用太阳能热解技术制备生物炭,并与传统热解方式制备的生物炭进行了比较,考察了两者在理化性质和吸附性能上的差异。结果表明,经不同热解工艺所制备的相同生物炭材料的比表面积和微观形貌基本相同,理化性质相似。其中:玉米秸秆生物炭在最佳pH=6的条件下对Cu2+的吸附符合Langmuir等温吸附模型,最大吸附容量约为25.87 mg·g−1;牛粪生物炭对Cu2+的吸附符合Freundlich等温吸附模型,两者均符合准二级动力学模型。综合上述结果,太阳能热解技术作为制备生物炭材料的新工艺,其制备的生物炭材料可成功应用于水中重金属离子的去除。Abstract: At present, the preparation of biochar mainly relies on the traditional pyrolysis with electric power as the heat source, which has disadvantages such as high energy consumption and heavy pollution, to a certain extent limiting its application as adsorption material in the field of industrial water treatment. In order to find new way to make biochar, corn straw and diary manure were taken as raw materials, solar pyrolysis was used as heat source for biochar preparation. Compared with biochar prepared by traditional pyrolysis way, the differences in physicochemical properties and adsorption capacity of these two types of biochar were explored. The result showed that two types of biochar prepared by the same raw materials and different pyrolysis process had the basically same specific surface area and microscopic morphology, and similar physical and chemical properties. Of which the adsorption of Cu2+ by corn straw biochar at the optimum pH of 6 fitted well with Langmuir model, and its maximum sorption capacity was about 25.87 mg·g−1; while the adsorption of Cu2+ by dairy manure biochar fitted well with Freundlich model. The sorption kinetics of Cu2+ on both types of biochar followed pseudo second order kinetic model. This experiment showed that solar pyrolysis technology was a new process for preparing biochar materials, and the biochar materials prepared by it could be successfully used in the treatment of heavy metal ions in water.
-
Key words:
- biochar /
- solar pyrolysis /
- adsorption /
- heavy metal pollution
-
表 1 生物炭的孔隙结构及产率
Table 1. Pore structures and yields of biochar
样品 SBET/(m2·g−1) Vtotal/ (m3·g−1) 平均孔径/nm 产率/% CJ 29.445 4 0.046 9 7.334 3 32.8 CN 8.348 0 0.020 7 8.820 8 70.7 TJ 30.717 6 0.069 2 6.146 3 30.8 TN 10.715 7 0.021 7 8.095 4 67.3 表 2 生物炭吸附铜离子等温线模型的拟合参数
Table 2. Fitting parameters for isotherm models of Cu2+ adsorption onto biochar
生物炭 Langmuir模型 Freundlich 模型 qm K R2 Kf n R2 TJ 25.81 12.35 0.998 5 6.22 0.28 0.922 8 CJ 25.92 6.67 0.995 4 8.43 0.23 0.921 6 TN 17.48 11.11 0.884 2 4.64 0.26 0.985 4 CN 16.77 5.88 0.808 0 5.90 0.22 0.979 9 表 3 生物炭吸附Cu2+动力学模型的拟合数据
Table 3. Fitting parameters for kinetics models of Cu2+ adsorption onto biochar
生物炭 准一级动力学 准二级动力学 颗粒内扩散 k1 qe R2 k2 qe R2 kip C R2 TJ 0.103 23.54 0.956 9 0.041 23.81 0.999 6 7.604 3.764 0.941 7 CJ 0.108 24.27 0.942 5 0.043 24.39 0.999 1 8.270 3.370 0.944 3 TN 0.103 17.40 0.963 6 0.031 17.85 0.998 5 4.811 1.365 0.962 1 CN 0.108 17.73 0.954 6 0.031 18.10 0.997 8 4.233 2.128 0.980 5 -
[1] 陈贵英, 李维, 陈顺德, 等. 环境铜污染影响及修复的研究现状综述[J]. 绿色科技, 2011, 1(12): 125-128. doi: 10.3969/j.issn.1674-9944.2011.12.059 [2] 邹照华, 何素芳, 韩彩芸, 等. 吸附法处理重金属废水研究进展[J]. 环境保护科学, 2010, 36(3): 35-39. doi: 10.3969/j.issn.1004-6216.2010.03.012 [3] TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125(4): 70-85. [4] MANYÀ J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. [5] ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833. [6] ZENG K, GAUTHIER D, SORIA J, et al. Solar pyrolysis of carbonaceous feedstocks: A review[J]. Solar Energy, 2017, 156(11): 73-92. [7] MORALES S, MIRANDA R, BUSTOS D, et al. Solar biomass pyrolysis for the production of bio-fuels and chemical commodities[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109(9): 65-78. [8] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107 [9] KOŁODYŃSKA D, WNĘTRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(1): 295-305. [10] QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121(1): 84-92. [11] 朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289. doi: 10.3321/j.issn:0254-0096.2006.12.018 [12] DHYANI V, BHASKAR T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129(5): 695-716. [13] SHINOGI Y, KANRI Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology, 2003, 90(3): 241-247. doi: 10.1016/S0960-8524(03)00147-0 [14] CHANG K, ZHANG Q Y. Improvement of the hourly global solar model and solar radiation for air-conditioning design in China[J]. Renewable Energy, 2019, 138(6): 1232-1238. [15] LIAN F, HUANG F, CHEN W, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. doi: 10.1016/j.envpol.2011.01.002 [16] CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052 [17] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107(1): 419-428. [18] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. [19] BRUUN E W, AMBUS P, EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46(1): 73-79. [20] CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. [21] XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50(1): 136-141. [22] PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229(1): 846-853. [23] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb(Ⅱ)、Cd(Ⅱ)的吸附[J]. 农业环境科学学报, 2015, 34(5): 45-48. [24] LIN D C, SHI M, ZHANG Y M, et al. 3D crateriform and honeycomb polymer capsule with nano re-entrant and screen mesh structures for the removal of Multi-component cationic dyes from water[J]. Chemical Engineering Journal, 2019, 375(1): 119-121. [25] TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834. [26] CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078 [27] 安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857. [28] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5 [29] SONG J, HE Q, HU X, et al. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem[J]. Environmental Science and Pollution Research, 2019, 26(13): 13221-13234. doi: 10.1007/s11356-019-04863-2 [30] FANG C, ZHANG T, LI P, et al. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater[J]. International Journal of Environmental Research and Public Health, 2014, 11(9): 9217-9237. doi: 10.3390/ijerph110909217 [31] JIAN X, ZHUANG X, LI B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10(2): 27-35. [32] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2013, 99(3): 19-33. [33] CHEN Z L, ZHANG J Q, HUANG L, et al. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. Journal of Integrative Agriculture, 2019, 18(1): 201-210. doi: 10.1016/S2095-3119(18)61987-2 [34] WANG X S, MIAO H H, HE W, et al. Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon[J]. Journal of Chemical & Engineering Data, 2011, 56(3): 444-449. [35] HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556. [36] JALAYERI H, PEPE F. Novel and high-performance biochar derived from pistachio green hull biomass: Production, characterization, and application to Cu(II) removal from aqueous solutions[J]. Ecotoxicology and Environmental Safety, 2019, 168(1): 64-71. [37] KING P, RAKESH S, BEENA L, et al. Biosorption of zinc onto Syzygium cumini L.: Equilibrium and kinetic studies[J]. Chemical Engineering Journal, 2008, 144(2): 181-187. doi: 10.1016/j.cej.2008.01.019