[1] |
陈贵英, 李维, 陈顺德, 等. 环境铜污染影响及修复的研究现状综述[J]. 绿色科技, 2011, 1(12): 125-128. doi: 10.3969/j.issn.1674-9944.2011.12.059
|
[2] |
邹照华, 何素芳, 韩彩芸, 等. 吸附法处理重金属废水研究进展[J]. 环境保护科学, 2010, 36(3): 35-39. doi: 10.3969/j.issn.1004-6216.2010.03.012
|
[3] |
TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125(4): 70-85.
|
[4] |
MANYÀ J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954.
|
[5] |
ROBERTS K G, GLOY B A, JOSEPH S, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833.
|
[6] |
ZENG K, GAUTHIER D, SORIA J, et al. Solar pyrolysis of carbonaceous feedstocks: A review[J]. Solar Energy, 2017, 156(11): 73-92.
|
[7] |
MORALES S, MIRANDA R, BUSTOS D, et al. Solar biomass pyrolysis for the production of bio-fuels and chemical commodities[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109(9): 65-78.
|
[8] |
林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206. doi: 10.12030/j.cjee.201501107
|
[9] |
KOŁODYŃSKA D, WNĘTRZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(1): 295-305.
|
[10] |
QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121(1): 84-92.
|
[11] |
朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289. doi: 10.3321/j.issn:0254-0096.2006.12.018
|
[12] |
DHYANI V, BHASKAR T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129(5): 695-716.
|
[13] |
SHINOGI Y, KANRI Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products[J]. Bioresource Technology, 2003, 90(3): 241-247. doi: 10.1016/S0960-8524(03)00147-0
|
[14] |
CHANG K, ZHANG Q Y. Improvement of the hourly global solar model and solar radiation for air-conditioning design in China[J]. Renewable Energy, 2019, 138(6): 1232-1238.
|
[15] |
LIAN F, HUANG F, CHEN W, et al. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems[J]. Environmental Pollution, 2011, 159(4): 850-857. doi: 10.1016/j.envpol.2011.01.002
|
[16] |
CAO X D, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052
|
[17] |
CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107(1): 419-428.
|
[18] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
|
[19] |
BRUUN E W, AMBUS P, EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46(1): 73-79.
|
[20] |
CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291.
|
[21] |
XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50(1): 136-141.
|
[22] |
PENG H B, GAO P, CHU G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229(1): 846-853.
|
[23] |
李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb(Ⅱ)、Cd(Ⅱ)的吸附[J]. 农业环境科学学报, 2015, 34(5): 45-48.
|
[24] |
LIN D C, SHI M, ZHANG Y M, et al. 3D crateriform and honeycomb polymer capsule with nano re-entrant and screen mesh structures for the removal of Multi-component cationic dyes from water[J]. Chemical Engineering Journal, 2019, 375(1): 119-121.
|
[25] |
TONG X J, LI J Y, YUAN J H, et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chemical Engineering Journal, 2011, 172(2/3): 828-834.
|
[26] |
CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. doi: 10.1016/j.biortech.2011.06.078
|
[27] |
安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857.
|
[28] |
XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013, 20(1): 358-368. doi: 10.1007/s11356-012-0873-5
|
[29] |
SONG J, HE Q, HU X, et al. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem[J]. Environmental Science and Pollution Research, 2019, 26(13): 13221-13234. doi: 10.1007/s11356-019-04863-2
|
[30] |
FANG C, ZHANG T, LI P, et al. Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater[J]. International Journal of Environmental Research and Public Health, 2014, 11(9): 9217-9237. doi: 10.3390/ijerph110909217
|
[31] |
JIAN X, ZHUANG X, LI B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10(2): 27-35.
|
[32] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2013, 99(3): 19-33.
|
[33] |
CHEN Z L, ZHANG J Q, HUANG L, et al. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. Journal of Integrative Agriculture, 2019, 18(1): 201-210. doi: 10.1016/S2095-3119(18)61987-2
|
[34] |
WANG X S, MIAO H H, HE W, et al. Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon[J]. Journal of Chemical & Engineering Data, 2011, 56(3): 444-449.
|
[35] |
HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556.
|
[36] |
JALAYERI H, PEPE F. Novel and high-performance biochar derived from pistachio green hull biomass: Production, characterization, and application to Cu(II) removal from aqueous solutions[J]. Ecotoxicology and Environmental Safety, 2019, 168(1): 64-71.
|
[37] |
KING P, RAKESH S, BEENA L, et al. Biosorption of zinc onto Syzygium cumini L.: Equilibrium and kinetic studies[J]. Chemical Engineering Journal, 2008, 144(2): 181-187. doi: 10.1016/j.cej.2008.01.019
|