-
磷酸铁锂电池的使用寿命一般为3~8 a[1],报废后会产生一系列的环境问题。电池内电解液以及黏结剂的挥发,对人、动物、植物都会有危害;潜在的短路会在短时间内释放出巨大的热量而引起火灾或爆炸等事故;重金属泄露进入土壤后会在植物、动物体内富集,经过食物链传输,最终会被人体摄入,对人的健康造成不可逆的危害[2-4]。对于废旧锂电池的回收处理刻不容缓。
针对废旧磷酸铁锂电池的处理,主要是针对正极材料(LiFePO4,LFP)中Li资源的回收。Li的回收一方面可保证资源的再利用;另一方面对于将P、Fe等元素制备成环境修复、重金属吸附、有机染料催化降解等方面的环境功能材料具有积极的促进作用,也可以实现废弃物资源再利用。因此,Li的回收不仅实现了废旧磷酸铁锂电池的高附加值资源利用,而且可以降低其对环境的影响,保证这类电池的回收效益。目前,Li的回收一般采用湿法和火法2种工艺。传统的“浸出-分步沉淀-锂回收”湿法冶金方式需要依赖强酸强碱[5-6],且Li的回收处于最后阶段,分步沉淀时会损失部分Li[7],降低了Li的回收率;新兴的选择性浸出工艺虽然有效地提升了Li的回收率,但是需要大量的试剂[8-10],工艺成本增加。火法工艺中,Li在高温煅烧时容易进入炉渣相中[7, 11],损失严重。传统的回收工艺容易产生酸雾、Cl2等有毒有害气体[12-14],对环境以及人体健康易造成危害。
机械化学活化(MCA)可产生摩擦、剪切等机械力,由此引起的物理和化学变化可有效降低物质活化能、增强反应活性[10, 15-16],改善物质的浸出特性[17],有助于缓解上述废旧锂电池回收过程中出现的问题。YANG等[18]将EDTA-2Na作为共磨剂与LFP进行机械化学活化,稀H3PO4溶液作为浸出剂,Fe和Li的浸出率分别为97.7%和94.3%;WANG等[19]选用EDTA作为共磨剂与LiCoO2进行MCA,水作为浸出剂,Co和Li的浸出率分别为98.0%和99.0%。研究人员选用EDTA等共磨试剂,与锂电池正极材料通过固-固反应形成稳定的可溶性螯合物,经过水洗[20]或者酸浸[18, 21]后以离子态存在于溶液中,虽然提高了浸出率,但是并没有达到选择性浸出Li的目的,依旧需要分步沉淀回收Li,降低了Li的整体回收率。由此可见,同时实现Li的选择性提取和高效率回收是当前面临的主要挑战。
传统的湿法以及火法冶金虽然有效地回收了锂电池中的贵重金属,机械活化法对重金属的回收具有较大的改善效果,但是对于选择性地高效回收单个金属的研究相对较少;此外,机械化学活化过程中,研究人员选用的共磨剂多为螯合型或酸性试剂,对共磨剂的研究还不是很全面,还要对共磨剂展开研究。本研究选用非强酸碱试剂与LFP共磨,以分解产物为H2O和O2的H2O2作为浸出剂,建立了机械化学活化协同湿法冶金的Li回收工艺,并对Fe在整个浸出过程中的浸出表现,以及Fe对Li选择性浸出的影响与作用进行了探究,为机械化学活化选择性回收废旧锂电池中的贵重金属提供参考。
机械化学活化对磷酸铁锂电池中锂选择性浸出特性的影响
Effect of mechanochemical activation on the selective leaching properties of lithium from LiFePO4 batteries
-
摘要: 针对传统方法不能实现废旧磷酸铁锂电池正极材料(LiFePO4)中锂(Li)选择性回收的问题,研究了“机械化学活化+浸出”联合工艺对Li选择性浸出的效果。对机械化学活化和浸出的工艺参数进行优化后,确定机械化学活化阶段的优化条件为:药剂用量(NH4)2SO4: LiFePO4摩尔比为1∶1、球料比为10∶1、湿磨时间为30 min。浸出阶段的优化条件为:浸出温度为80 ℃、H2O2体积分数为4%、固液比为50∶1 (g∶L),浸出时间为50 min。浸出反应的机理为,机械活化后,LiFePO4的晶格发生错位,颗粒粒径减小;浸出后LiFePO4中Fe的价态发生变化、Li与共磨剂络合。在优化的条件下,Li的浸出率为99.55%、Fe的浸出率为0,达到了选择性浸出Li的目的。本研究所开发的机械化学活化法可为高选择性回收废旧锂电池中的Li提供参考。Abstract: In order to overcome the drawback of traditional recycling methods that can not selectively recover lithium (Li) from waste LiFePO4 cathode material, the performance of the mechanochemical activation and leaching joint process on the selective leaching of Li was studied. After optimizing the parameters of mechanochemical activation and leaching, the optimum conditions of mechanochemical activation stage were determined as follows: (NH4)2SO4∶LiFePO4 molar ratio of 1∶1, ball and materials ratio of 10∶1 and wet grinding time of 30 min; and the optimum conditions of leaching stage were determined as follows: leaching temperature of 80 ℃, 4%(volume ratio) H2O2, solid-liquid ratio of 50∶1 (g∶L) and leaching time of 50 min. The mechanisms of leaching reaction could be illustrated as follows. After mechanical activation, the dislocation of LiFePO4 lattice and the reduction of particle size occurred. Meanwhile the change of valence state of Fe in LiFePO4 and the complexation between Li and abrasives appeared during leaching process. Under the optimized conditions, the leaching rate of Li was 99.55% and the leaching rate of Fe was 0, thus the selective recovery of Li was achieved. The environmentally friendly mechanochemical activation method developed in this study could provide technical supports for the recovery of precious metals in waste lithium batteries with high selectivity
-
Key words:
- LiFePO4 /
- selective leaching /
- lithium recovery /
- mechanochemical activation /
- lattice defect
-
表 1 废旧锂电池中回收金属的不同工艺的比较
Table 1. Comparison of different technologies for recovering metals in spent lithium batteries
正极材料 共磨剂 浸出剂 金属浸出率及其他 选择性 来源 LiFePO4 (NH4)2SO4 H2O2 Li浸出率:99.55%;Fe浸出率:0 有 本研究 LiFePO4 EDTA-2Na H3PO4 Li浸出率:94.29%;Fe浸出率:97.67% 无 [18] LiFePO4 H3Cit H2O2 Li浸出率:99.35%;Fe浸出率:3.86% 有 [36] LiFePO4 无 CH3COOH+H2O2 Li浸出率:95.05%;Al/Fe<1% 有 [35] LiCoO2 EDTA H2O Li浸出率:99%;Co浸出率:98% 无 [19] LiCoO2 PVC+Fe H2O Li浸出率:100%;Co浸出率:0 有 [20] LiNixCoyMnzO2 无 H3Cit+C6H12O6 Li浸出率:99%;Ni浸出率:91%;Co浸出率:92%;Mn浸出率:94% 无 [37] LiNixCoyMnzO2 Fe HNO3 Li浸出率:77%;Ni浸出率:99%;Co浸出率:91%;Mn浸出率:100% 无 [21] -
[1] WANG W, WU Y. An overview of recycling and treatment of spent LiFePO4 batteries in China[J]. Resources Conservation and Recycling, 2017, 127: 233-243. doi: 10.1016/j.resconrec.2017.08.019 [2] DEWULF J, VAN DER VORST G, DENTURCK K, et al. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings[J]. Resources Conservation and Recycling, 2010, 54(4): 229-234. doi: 10.1016/j.resconrec.2009.08.004 [3] 王萌萌. 废旧锂电池中锂和钴的机械化学回收方法与机制研究[D]. 北京: 中国科学院大学, 2016. [4] 孙杰, 李吉刚, 党胜男, 等. 锂离子电池及其材料热失控毒物研究[J]. 储能科学与技术, 2015, 4(6): 609-615. doi: 10.3969/j.issn.2095-4239.2015.06.008 [5] HUANG Y F, HAN G H, LIU J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process[J]. Journal of Power Sources, 2016, 325: 555-564. doi: 10.1016/j.jpowsour.2016.06.072 [6] ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. doi: 10.1039/C6RA05477C [7] LIU C W, LIN J, CAO H B, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. doi: 10.1016/j.jclepro.2019.04.304 [8] LI L, LU J, ZHAI L, et al. A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid[J]. CSEE Journal of Power and Energy Systems, 2018, 4(2): 219-225. doi: 10.17775/CSEEJPES.2016.01880 [9] ZHANG J, HU J, LIU Y, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. [10] LIU K, TAN Q Y, LIU L L, et al. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution[J]. Environmental Science & Technology, 2019, 53(16): 9781-9788. [11] 屈莉莉, 何亚群, 付元鹏, 等. 用乙酸从废锂电池电极材料中浸出有价金属试验研究[J]. 湿法冶金, 2019, 38(3): 182-186. [12] CHEN X P, CAO L, KANG D Z, et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium[J]. Waste Management, 2018, 80: 198-210. doi: 10.1016/j.wasman.2018.09.013 [13] XU J Q, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. doi: 10.1016/j.jpowsour.2007.11.074 [14] ORDONEZ J, GAGO E J, GIRARD A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 195-205. [15] WANG M, TAN Q, LI J. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries[J]. Environmental Science & Technology, 2018, 52(22): 13136-13143. [16] ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 65. [17] 高桂兰, 罗兴民, 关杰, 等. 机械化学协同抗坏血酸浸出废旧锂离子电池中的有价金属[J]. 环境污染与防治, 2019, 41(6): 636-640. [18] YANG Y, ZHENG X, CAO H, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9972-9980. [19] WANG M M, ZHANG C C, ZHANG F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach[J]. Waste Management, 2016, 51: 239-244. doi: 10.1016/j.wasman.2016.03.006 [20] WANG M M, ZHANG C C, ZHANG F S. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process[J]. Waste Management, 2017, 67: 232-239. doi: 10.1016/j.wasman.2017.05.013 [21] GUAN J, LI Y G, GUO Y G, et al. Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1026-1032. [22] PIVINSKII Y E, DYAKIN P V, PIVINSKII Y Y, et al. A study and comparison of the properties of bauxite treated by dry and wet grinding techniques[J]. Refractories and Industrial Ceramics, 2003, 44(6): 399-404. doi: 10.1023/B:REFR.0000016778.20952.c6 [23] BU X, CHEN Y, MA G, et al. Wet and dry grinding of coal in a laboratory-scale ball mill: Particle-size distributions[J]. Powder Technology, 2020, 359: 305-313. doi: 10.1016/j.powtec.2019.09.062 [24] CAO X, CHEN D, GU H, et al. Improved bonding properties of rectorite clay slurry after wet/dry grinding[J]. Applied Clay Science, 2019, 183: 105318. doi: 10.1016/j.clay.2019.105318 [25] 王萌萌, 张付申. 废旧锂电池的机械化学处理方法与机制[J]. 环境工程学报, 2017, 11(2): 1069-1074. doi: 10.12030/j.cjee.201509213 [26] 聂正林, 宋广翰, 孟雯, 等. 机械活化对废荧光粉中钇浸出动力学的影响[J]. 环境工程学报, 2019, 13(6): 1410-1416. doi: 10.12030/j.cjee.201810007 [27] 苑文仪, 李金惠, 张承龙, 等 机械活化对CRT锥玻璃浸出动力学的影响[J]. 环境工程学报, 2014, 8(8): 3390-3394. [28] 胡中求, 郭莉, 姚瑛瑛, 等 球磨辅助碱浸铜冶炼烟灰中砷与有价金属选择性分离[J]. 环境工程学报, 2018, 12(11): 3243-3250. [29] 陈雅, 尹昭森, 王文嘉, 等 混凝-过氧化氢氧化联用预处理微藻液化废水的研究[J]. 江苏农业科学, 2019, 47(4): 227-232. [30] 吴志敏, 韦朝海, 吴超飞. H2O2湿式氧化处理含酸性红B染料模拟废水的研究[J]. 环境科学学报, 2004, 24(5): 809-814. doi: 10.3321/j.issn:0253-2468.2004.05.009 [31] 洪喆, 付朝阳. 超声辐照水体系下羟基自由基的检测[J]. 化学分册, 2012, 48(5): 524-525. [32] SHIH Y J, CHIEN S K, JHANG S R, et al. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 151-159. doi: 10.1016/j.jtice.2019.04.017 [33] WANG X, FENG Z, HUANG J, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127: 149-157. doi: 10.1016/j.carbon.2017.10.101 [34] WANG X, WANG X, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216. doi: 10.1016/j.wasman.2018.05.029 [35] YANG Y, MENG X, CAO H, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. doi: 10.1039/C7GC03376A [36] LI L, BIAN Y, ZHANG X, et al. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries[J]. Waste Management, 2019, 85: 437-444. doi: 10.1016/j.wasman.2019.01.012 [37] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-3570. doi: 10.1016/j.jclepro.2015.10.132