-
2019年,中国粗钢产量达到9.963×108 t,比2018年增长8.3%,在全球粗钢产量中的份额上升到53.3%[1]。钢铁行业发展迅猛,其原料之一的铁矿石虽现储量十分丰富,但大多数已探明的铁矿石品位较低,只有经过选矿和富集处理后才能使用[2];而且,大多常规选矿方法只针对高品位铁矿石,大量低品位铁尾矿被废弃。虽然这些铁尾矿的铁平均品位较低,但是由于其历史存量非常大,如果按铁尾矿总量计算,铁元素的总含量十分庞大;加之随着选矿技术的发展和铁矿石价格的上涨,低品位的铁尾矿又被赋予了利用价值。然而,低品位铁尾矿粒度细、易泥化,常规选矿方法成本高,难以有效回收利用[2]。从铁尾矿中富集铁的方法有很多,主要包括直接还原法[3-5]、微波焙烧[6-7]、悬浮磁化焙烧[8-9]和浮选[10]等方法。其中,还原焙烧结合磁选工艺已被证明可获得高铁品位,并可从贫矿中回收铁元素,获得高品位的铁精矿[11-14]。磁化焙烧是将弱磁性铁矿石还原焙烧成强磁性的铁精矿,利用低强度磁选设备进行简单回收的一种焙烧工艺。反应机理可用方程式(1)和式(2)表示。
在磁化焙烧过程中,需要大量的还原剂,若将煤作为磁化焙烧的主要还原剂[13],不仅会增加生产成本,而且在加热过程中会产生二氧化硫。因此,寻找低成本、少污染的绿色还原剂成为铁尾矿磁化焙烧技术工业化应用的关键。
有研究[15]发现,生物质热解产生的固体碳和各种烃类气体等可以作为磁化焙烧的还原剂。生物碳是生物质热解的固体产物,可以由农业废弃物如鸡粪、猪粪、木屑、秸秆以及工业有机废弃物、城市污泥等得来[15]。生物质碳化过程降解了部分生物质,但保留了大部分含碳物质,使得产物的碳含量更高,因此更容易用作技术流程的替代品[16];并且该工艺还具有减少温室气体排放、降低SOx和NOx生成等环境友好特性[17]。NAYAK等[18]研究了废椰壳在铁矿还原焙烧中的应用,在焙烧温度为800 ℃、生物质投料比为20%和焙烧时间为60 min的焙烧条件下,将铁品位从49%提高到63%。ZHANG等[19]研究发现,以秸秆为还原剂时,铁尾矿的磁性得到了有效提升,焙烧后的饱和磁化强度为60.13 emu·g−1。RATH等[20]利用木屑和花生壳混合而成的生物质作为还原剂,研究包头低品位褐铁矿的磁化焙烧情况,当温度为750 ℃、生物质投加量为10%和焙烧时间为40 min时,在磁选后能得到回收率为64%、品位为65%的铁精矿。以往的研究大多使用椰壳、花生壳等不同生物质做还原剂,在磁化焙烧后,均能在一定程度上还原矿中的铁元素,将弱磁性铁还原成强磁性铁,但以木屑生物质作为磁化焙烧-磁选过程还原剂的研究还比较少。我国每年产生的木材加工类废弃物108 t[21],其中包括锯木厂、木器加工厂、伐木场等企业排放的大量锯木屑。将木屑用于铁尾矿中铁回收,既能解决目前铁精矿供应不足的问题,也能解决大量木屑废弃物堆积的环境问题。
本研究为探究木屑生物质作为还原剂在铁矿石磁化焙烧磁选工艺中应用的可能性,在焙烧温度650、750、850和950 ℃,木屑与铁尾矿的配比为5、10、15和20%的条件下,将掺入木屑的铁尾矿在管式炉内分别焙烧20、40、60和80 min后,采用低强度磁选法对这些焙烧矿进行分离。研究木屑的掺入对铁精矿品位及回收铁的影响,通过XRD与热重分析研究焙烧过程中的机制,对铁尾矿焙烧前后的表面形貌变化及磁性性能进行了测定,为分析铁的回收效率提供参考。
木屑对铁尾矿磁化焙烧磁选工艺的影响
Effects of sawdust on magnetization calcination-magnetic separation process of iron tailings
-
摘要: 由于我国铁尾矿堆存量大、铁品位低,导致其资源化利用率低,因此,以木屑生物质作还原剂回收铁尾矿中的铁元素,考察不同焙烧温度、焙烧时间、木屑添加量等对铁尾矿磁化焙烧的影响。结果表明:木屑磁化焙烧提高铁尾矿磁性性能的最佳焙烧条件为焙烧温度750 ℃、木屑添加量15%及焙烧时间40 min;在该条件下,铁精矿品位为62.84%,且铁回收率为94.58%。经物相分析发现,原铁尾矿中,含铁矿物主要为赤铁矿,而焙烧后主要以磁铁矿为主。振动样品磁强计分析表明,铁矿石的饱和磁化强度从0.04 emu·g−1提高到了46.01 emu·g−1。以木屑生物质作为还原剂进行铁尾矿磁化焙烧,可较好地提高其中铁的品位和磁化强度,从而实现铁矿石的低强度磁选分离。Abstract: China’s iron tailings pile has a large stock and low iron grade, resulting in its low resource utilization rate. In this study, sawdust biomass was used as reducing agent to recover the iron element in iron tailings, and the influence of calcination temperature, calcination time and sawdust dosage on magnetization-calcination of iron tailings. The results show that the best conditions for sawdust magnetization calcination to improve the magnetic property of iron tailings were as follows: calcination temperature of 750 ℃, 15% sawdust dosage and calcination time of 40 min, at which the iron concentrate grade and iron recovery rate were 62.84% and 94.58%, respectively. Phase analysis showed that hematite was the main crystalline phase in the iron-bearing minerals of raw iron tailings were mainly, and magnetite was the main crystalline phase in calcined iron tailings. The analysis with vibration sample magnetometer further showed that the saturation magnetization of iron ore increased from 0.04 emu·g−1 to 46.01 emu·g−1. Magnetization calcination using sawdust biomass as a reducing agent could greatly improve the grade and magnetization intensity of iron in iron tailings, and achieve low-intensity magnetic separation of iron oxide.
-
Key words:
- iron tailings /
- sawdust /
- magnetic roasting /
- magnetic separation /
- solid waste resource utilization
-
[1] World Steel Association. Global crude steel output increases by 3.4% in 2019 [EB/OL]. [2020-01-27]. https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html, 2020. [2] DONSKOI E, COLLINGS A F, POLIAKOV A, et al. Utilisation of ultrasonic treatment for upgrading of hematitic/goethitic iron ore fines[J]. International Journal of Mineral Processing, 2012, 114-117: 80-92. doi: 10.1016/j.minpro.2012.10.005 [3] HUANG D B, ZONG Y B, WEI R F, et al. Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis[J]. Journal of Iron and Steel Research International, 2016, 23(9): 874-883. doi: 10.1016/S1006-706X(16)30134-0 [4] YU W, SUN T C, HU T Y. Desulfuration behavior of low-grade iron ore-coal briquette during the process of direct reduction followed by magnetic separation[J]. ISIJ International, 2015, 55(1): 329-331. doi: 10.2355/isijinternational.55.329 [5] ZHAO Q, XUE J, CHEN W. Zero-waste recycling method for nickel leaching residue by direct reduction magnetic separation process and ceramsite preparation[J]. Transactions of the Indian Institute of Metals, 2019, 72(4): 1075-1085. doi: 10.1007/s12666-019-01582-7 [6] LI H, LONG H, ZHANG L, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings[J]. Journal of Hazardous Materials, 2019, 384: 1-11. [7] SAMOUHOS M, TAXIARCHOU M, TSAKIRIDIS P E, et al. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process[J]. Journal of Hazardous Materials, 2013, 254(1): 193-205. [8] LI Y J, WANG R, HAN Y X, et al. Phase transformation in suspension roasting of oolitic hematite ore[J]. Journal of Central South University, 2015, 22(12): 4560-4565. doi: 10.1007/s11771-015-3006-8 [9] TRISNANTO S B, KITAMOTO Y. Nonlinearity of dynamic magnetization in a superparamagnetic clustered-particle suspension with regard to particle rotatability under oscillatory field[J]. Journal of Magnetism Magnetic Materials, 2016, 400: 361-364. doi: 10.1016/j.jmmm.2015.07.016 [10] CHARVES A P, RUIZ A S. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings[J]. International Journal of Coal Preparation and Utilization, 2009, 29(6): 289-297. doi: 10.1080/19392690903558371 [11] LI H, LI X, LIU L, et al. Experimental study of microwave-assisted pyrolysis of rice straw for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2263-2267. doi: 10.1016/j.ijhydene.2015.11.137 [12] PONOMAR V P, BRIK O B, CHEREVKO Y I, et al. Kinetics of hematite to magnetite transformation by gaseous reduction at low concentration of carbon monoxide[J]. Chemical Engineering Research Design, 2019, 148: 393-402. doi: 10.1016/j.cherd.2019.06.019 [13] SUN Y S, HAN Y X, GAO P, et al. Growth kinetics of metallic iron phase in coal-based reduction of oolitic iron ore[J]. ISIJ International, 2016, 56(10): 1697-1704. doi: 10.2355/isijinternational.ISIJINT-2016-253 [14] SUN Y S, HAN Y X, GAO P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(4): 331-338. doi: 10.1007/s12613-014-0913-x [15] WEBER K, QUICKER P. Properties of biochar[J]. Fuel, 2018, 217: 240-261. doi: 10.1016/j.fuel.2017.12.054 [16] YANG X, WAN Y, ZHENG Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. doi: 10.1016/j.cej.2019.02.119 [17] ŞAHBAZ O, UÇRA A, ÖTEYAKA B, et al. Separation of colemanite from tailings using the pilot scale flotation column[J]. Powder Technology, 2017, 309: 31-36. doi: 10.1016/j.powtec.2016.12.077 [18] NAYAK D, DASH N, RAY N, et al. Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines[J]. Powder Technology, 2019, 353: 450-458. doi: 10.1016/j.powtec.2019.05.053 [19] ZHANG K, CHEN X L, GUO W C, et al. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting[J]. Plos One, 2017, 12(10): e0186274. doi: 10.1371/journal.pone.0186274 [20] RATH S S, RAO D S, TRIPATHY A, et al. Biomass briquette as an alternative reductant for low grade iron ore resources[J]. Biomass and Bioenergy, 2018, 108: 447-454. doi: 10.1016/j.biombioe.2017.10.045 [21] 余高, 陈芬, 谢英荷, 等. 农业有机废弃物资源化利用潜力与安全性评价[J/OL]. [2020-01-01]. 河南农业科学, 2020: 1-10. http://www.hnnykxbjb.cn/index.php?m=content&c=index&a=lists&catid=2. [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2008. [23] YU J, HAN Y, LI Y, et al. Beneficiation of an iron ore fines by magnetization roasting and magnetic separation[J]. International Journal of Mineral Processing, 2017, 168: 102-108. doi: 10.1016/j.minpro.2017.09.012 [24] WANG Z B, PENG B, ZHANG L F, et al. Study on formation mechanism of fayalite (Fe2SiO4) by solid state reaction in sintering process[J]. Journal of the Minerals, Metals & Materials Society, 2018, 70(4): 539-546. [25] LAZDOVICA K, KAMPARS V, LIEPINA L, et al. Comparative study on thermal pyrolysis of buckwheat and wheat straws by using TGA-FTIR and Py-GC/MS methods[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 1-15. doi: 10.1016/j.jaap.2017.03.010 [26] 陈楠纬, 孙水浴, 任杰, 等. 咖啡渣燃烧特性及动力学研究[J]. 环境科学学报, 2015, 35(9): 2942-2947. [27] 朱德庆, 赵强, 邱冠周, 等. 安徽褐铁矿的磁化焙烧磁选工艺[J]. 北京科技大学学报, 2010, 32(6): 714-718. [28] 王威, 刘红召, 曹耀华, 等. 江西某铁尾矿磁化焙烧磁选工艺研究[J]. 金属矿山, 2013(12): 147-150. [29] 徐承焱, 孙体昌, 寇珏, 等. 还原剂对高磷鲕状赤铁矿还原行为的影响[J]. 材料热处理学报, 2015, 36(10): 8-15.