[1] WANG W, WU Y. An overview of recycling and treatment of spent LiFePO4 batteries in China[J]. Resources Conservation and Recycling, 2017, 127: 233-243. doi: 10.1016/j.resconrec.2017.08.019
[2] DEWULF J, VAN DER VORST G, DENTURCK K, et al. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings[J]. Resources Conservation and Recycling, 2010, 54(4): 229-234. doi: 10.1016/j.resconrec.2009.08.004
[3] 王萌萌. 废旧锂电池中锂和钴的机械化学回收方法与机制研究[D]. 北京: 中国科学院大学, 2016.
[4] 孙杰, 李吉刚, 党胜男, 等. 锂离子电池及其材料热失控毒物研究[J]. 储能科学与技术, 2015, 4(6): 609-615. doi: 10.3969/j.issn.2095-4239.2015.06.008
[5] HUANG Y F, HAN G H, LIU J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process[J]. Journal of Power Sources, 2016, 325: 555-564. doi: 10.1016/j.jpowsour.2016.06.072
[6] ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. doi: 10.1039/C6RA05477C
[7] LIU C W, LIN J, CAO H B, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. doi: 10.1016/j.jclepro.2019.04.304
[8] LI L, LU J, ZHAI L, et al. A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid[J]. CSEE Journal of Power and Energy Systems, 2018, 4(2): 219-225. doi: 10.17775/CSEEJPES.2016.01880
[9] ZHANG J, HU J, LIU Y, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631.
[10] LIU K, TAN Q Y, LIU L L, et al. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution[J]. Environmental Science & Technology, 2019, 53(16): 9781-9788.
[11] 屈莉莉, 何亚群, 付元鹏, 等. 用乙酸从废锂电池电极材料中浸出有价金属试验研究[J]. 湿法冶金, 2019, 38(3): 182-186.
[12] CHEN X P, CAO L, KANG D Z, et al. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium[J]. Waste Management, 2018, 80: 198-210. doi: 10.1016/j.wasman.2018.09.013
[13] XU J Q, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. doi: 10.1016/j.jpowsour.2007.11.074
[14] ORDONEZ J, GAGO E J, GIRARD A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 195-205.
[15] WANG M, TAN Q, LI J. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries[J]. Environmental Science & Technology, 2018, 52(22): 13136-13143.
[16] ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 65.
[17] 高桂兰, 罗兴民, 关杰, 等. 机械化学协同抗坏血酸浸出废旧锂离子电池中的有价金属[J]. 环境污染与防治, 2019, 41(6): 636-640.
[18] YANG Y, ZHENG X, CAO H, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9972-9980.
[19] WANG M M, ZHANG C C, ZHANG F S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach[J]. Waste Management, 2016, 51: 239-244. doi: 10.1016/j.wasman.2016.03.006
[20] WANG M M, ZHANG C C, ZHANG F S. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process[J]. Waste Management, 2017, 67: 232-239. doi: 10.1016/j.wasman.2017.05.013
[21] GUAN J, LI Y G, GUO Y G, et al. Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1026-1032.
[22] PIVINSKII Y E, DYAKIN P V, PIVINSKII Y Y, et al. A study and comparison of the properties of bauxite treated by dry and wet grinding techniques[J]. Refractories and Industrial Ceramics, 2003, 44(6): 399-404. doi: 10.1023/B:REFR.0000016778.20952.c6
[23] BU X, CHEN Y, MA G, et al. Wet and dry grinding of coal in a laboratory-scale ball mill: Particle-size distributions[J]. Powder Technology, 2020, 359: 305-313. doi: 10.1016/j.powtec.2019.09.062
[24] CAO X, CHEN D, GU H, et al. Improved bonding properties of rectorite clay slurry after wet/dry grinding[J]. Applied Clay Science, 2019, 183: 105318. doi: 10.1016/j.clay.2019.105318
[25] 王萌萌, 张付申. 废旧锂电池的机械化学处理方法与机制[J]. 环境工程学报, 2017, 11(2): 1069-1074. doi: 10.12030/j.cjee.201509213
[26] 聂正林, 宋广翰, 孟雯, 等. 机械活化对废荧光粉中钇浸出动力学的影响[J]. 环境工程学报, 2019, 13(6): 1410-1416. doi: 10.12030/j.cjee.201810007
[27] 苑文仪, 李金惠, 张承龙, 等 机械活化对CRT锥玻璃浸出动力学的影响[J]. 环境工程学报, 2014, 8(8): 3390-3394.
[28] 胡中求, 郭莉, 姚瑛瑛, 等 球磨辅助碱浸铜冶炼烟灰中砷与有价金属选择性分离[J]. 环境工程学报, 2018, 12(11): 3243-3250.
[29] 陈雅, 尹昭森, 王文嘉, 等 混凝-过氧化氢氧化联用预处理微藻液化废水的研究[J]. 江苏农业科学, 2019, 47(4): 227-232.
[30] 吴志敏, 韦朝海, 吴超飞. H2O2湿式氧化处理含酸性红B染料模拟废水的研究[J]. 环境科学学报, 2004, 24(5): 809-814. doi: 10.3321/j.issn:0253-2468.2004.05.009
[31] 洪喆, 付朝阳. 超声辐照水体系下羟基自由基的检测[J]. 化学分册, 2012, 48(5): 524-525.
[32] SHIH Y J, CHIEN S K, JHANG S R, et al. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100: 151-159. doi: 10.1016/j.jtice.2019.04.017
[33] WANG X, FENG Z, HUANG J, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127: 149-157. doi: 10.1016/j.carbon.2017.10.101
[34] WANG X, WANG X, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216. doi: 10.1016/j.wasman.2018.05.029
[35] YANG Y, MENG X, CAO H, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. doi: 10.1039/C7GC03376A
[36] LI L, BIAN Y, ZHANG X, et al. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries[J]. Waste Management, 2019, 85: 437-444. doi: 10.1016/j.wasman.2019.01.012
[37] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-3570. doi: 10.1016/j.jclepro.2015.10.132