-
土壤和地下水中铬污染是我国当前亟待解决的环境问题。铬污染主要来源于铬盐生产、电镀、制革等工业废水及固体废弃物的排放[1]。历史上,我国曾有大量露天堆积的铬渣,虽然经整治与处理后大部分铬渣已得到安全处置[2],但铬渣堆场附近仍存在大面积受Cr(Ⅵ)污染土壤[3]。这些受Cr(Ⅵ)污染的土壤,由于淋溶作用,极易溶出Cr(Ⅵ),导致场地周围地下水在相当长的时间内受到Cr(Ⅵ)潜在污染的威胁[4-6]。因此,开展土壤-地下水Cr(Ⅵ)污染修复具有重要的实际意义。
自然条件下,铬在土壤-地下水中主要以Cr(Ⅲ)和Cr(Ⅵ) 2种氧化状态存在[7]。其中,Cr(Ⅲ)在pH=6~12时,由于能够形成稳定的氢氧化物沉淀析出[8],导致其迁移性大大降低;同时Cr(Ⅲ)毒性较低,故仅在很高浓度条件下才表现出生物毒性[9]。与此相反,Cr(Ⅵ)具有致癌性,因易溶于水,故在地下水中具有很强的迁移性[10-11]。因此,对受Cr(Ⅵ)污染的地下水常采用原位还原固定化技术,通过向地下含水层中注入还原剂将Cr(Ⅵ)还原固定为Cr(Ⅲ)降低其迁移性和毒性,从而实现修复的目的。
常用的Cr(Ⅵ)原位修复技术主要包括可渗透反应墙(PRB)、生物修复、电动修复和原位氧化还原控制墙技术(in situ redox manipulation, ISRM)等。传统的PRB技术通过在污染源下游地下含水层中开挖沟槽、回填活性反应材料以实现修复目的。但实际应用中该技术一般用于受污染的浅层地下水,不适于深部地下水的修复。ISRM技术是近年来提出的一类新型的原位还原技术。该技术通过注入井向地下污染区域注入还原剂以建立还原性环境,从而实现污染物的还原修复[12-15]。与PRB技术相比,ISRM对较深含水层的污染修复具有明显的优势。
地下水修复中常用的还原剂包括硫类化合物、铁基及有机类还原剂[16]。其中硫基还原剂因具有优异的反应活性,在地下水Cr(Ⅵ)还原固定化修复中受到广泛的关注。采用ISRM技术修复受Cr(Ⅵ)污染地下水中研究最多的2种硫化物为连二亚硫酸钠和多硫化物。虽然连二亚硫酸钠具有很强的还原能力,但由于其在中性水溶液中不稳定,在实际修复中需要外加碱性物质(如碳酸钾/碳酸氢钾缓冲)[14],因此,在实际应用中受到一定限制。有研究表明,多硫化物(Sx2-)性能稳定、还原能力强,可以在多孔介质中形成相对持久的还原性区域,是EPA推荐的修复试剂,近年来,在地下水修复中引起了广泛的关注[12,17]。连二亚硫酸钠与多硫化物的修复机理类似。以ISRM中采用多硫化物还原固定化Cr(Ⅵ)为例,通过注入井向含水层注入的多硫化物首先还原孔隙水中的Cr(Ⅵ)使其以三价铬的形式固定下来;而剩余的多硫化物能进一步与含水层中含铁矿物中的Fe(Ⅲ)反应生成Fe(Ⅱ)。SHI等[18]的研究表明,多硫化物可以与纤铁矿反应生成含二价铁的次生还原性产物;所产生的Fe(Ⅱ)以固相和强吸附态形态为主,而溶解态的相对较少。这也解释了多硫化物具有在受污染含水层中建立持久还原性区域能力的原因,使其在地下水还原修复中得到广泛研究和应用[13,19]。
现场实验结果也表明,多硫化物对受铬污染土壤地下水的修复具有优异的效果[1,20-23]。一项有关采用多硫化钙对英国格拉斯哥某受铬渣污染地下水进行的中试研究结果表明:在所选用的3种修复方法中,以直接向含水层注入多硫化钙的方案效果最佳,可以将Cr(Ⅵ)浓度从800 μg·L−1降至30 μg·L−1。MESSER等[17]对美国亚利桑那某电镀污染现场的中试结果表明,经多硫化物处理,可使包气带土壤和孔隙水中Cr(Ⅵ)分别从处理前的2 190 mg·kg−1和3 600 mg·L−1降至10%以下,而含水层中的Cr(Ⅵ)迅速由240 mg·L−1降至1 mg·L−1。进一步的检测表明,多硫化物在含水层中所形成的还原性区域能维持数月,对地下水中Cr(Ⅵ)污染具有长期修复的潜力。
由于褐土和红壤是我国2种重要的土壤类型,其分别在河南省和云南省有广泛的分布,而且在两省均曾有铬渣的堆放,因此,本研究选择褐土和红壤为研究对象,在室内通过土壤柱实验模拟研究了采用ISRM技术还原固定化修复受Cr(Ⅵ)污染的土壤-地下水的过程,考察了多硫化物对土壤样品的硫化处理及硫化后对Cr(Ⅵ)的还原能力,以及还原Cr(Ⅵ)柱实验过程中多硫化物的电子利用效率等。在柱实验过程中,同时对出水pH、氧化还原电位进行实时监测,以考察柱体内是否有效地建立了还原区域。研究结果可对以多硫化物为还原剂采用ISRM技术现场修复Cr(Ⅵ)污染的土壤-地下水具有一定的参考价值。
多硫化物原位修复地下水中六价铬污染柱实验模拟
In-situ remediation of Cr(Ⅵ)-contaminated groundwater by polysulfide in a simulated soil column
-
摘要: 以红壤和褐土为研究对象,以多硫化物为还原剂,在实验室通过土壤柱实验模拟研究了原位氧化还原控制墙技术(in situ redox manipulation, ISRM)还原固定化修复受Cr(VI)污染的土壤-地下水的过程。结果表明:红壤柱和褐土柱经多硫化物硫化后均具有良好的还原能力,但还原能力存在一定的差异。向硫化处理后的红壤和褐土柱持续通入10 mg·L−1 Cr(Ⅵ),观察到土柱分别在38PV (pore volume, 孔隙体积)和22PV穿透,并最终在218PV和138PV左右,其完全丧失对Cr(Ⅵ)的还原能力。在土壤硫化过程及硫化土柱还原Cr(Ⅵ)的实验中观察到,系统的pH和氧化还原电位均发生了显著的变化。对实验结果进一步分析表明,经硫化处理后红壤和褐土的电子利用效率分别为23.0%和24.8%。基于柱实验研究结果,以多硫化物为还原剂采用ISRM技术修复受Cr(Ⅵ)污染的土壤-地下水系统是有效的。多硫化物的加入不仅可以有效去除孔隙水中的Cr(Ⅵ),而且通过在地下多孔介质中建立有效的还原区域,从而能够在一定时间内持续性地处理Cr(Ⅵ)。柱实验结果中所观察到的多硫化物实际添加量与理论值之间存在的偏差可能是由于土壤复杂性造成的。因此,采用ISRM技术现场修复应适当加入过量还原剂以保证实际修复效果。Abstract: Soil column tests were conducted to study the the remediation of chromate-contaminated groundwater with the reductive immobilization of in situ redox manipulation (ISRM) when polysulfide was chosen as the reductant and field-collected red soil and cinnamon were chosen as the packing material. The results indicated that both types of polysulfide-treated soils had good reductive properties to immobilize Cr(Ⅵ), although their reductive capacities varied to some extent. When 10 mg·L−1 Cr(Ⅵ) solution was continuously injected to the column packed with sulfidization treated red soil and cinnamon, the corresponding column breakthrough occurred at 38PV and 22PV, and their reductive capacities depleted at 218PV and 138PV, respectively. Significant changes in effluent pH and oxidation-reduction potential were observed in the soil sulfidization experiments and Cr(Ⅵ) reduction with sulfidization treated soil column. Further analysis indicated that the electronic utilization efficiencies of polysulfide-treated red and cinnamon soils were 23.0% and 24.8%, respectively. Based on column experiments, remediation of Cr(Ⅵ)-contaminated groundwater by ISRM with polysulfide reductant was an effective approach. Polysulfide addition can not only remove chromate in pore-water effectively, but also establish an effective reductive zone in porous media and perform a continuous field treatment of Cr(Ⅵ). The difference in dosages of polysulfide used in column tests and predicated by theory may arise from the complexity of soils. Thus, the actual remediation effect could be ensured by the application of field remediation with ISRM and reasonable addition of overdosed reductant.
-
Key words:
- soil-groundwater /
- polysulfide /
- sulfidation /
- Cr(Ⅵ) /
- in-situ reductive immobilization
-
-
[1] GUERTIN J, JACOBS J A, AVAKIAN C P, et al. Chromium(VI) Handbook[M]. First Edition. Florida: CRC Press, 2004. [2] 刘磊, 王宇峰, 李慧, 等. 某铬渣污染场地不同粒径土壤中六价铬的分布特征及其淋洗修复工艺[J]. 杭州师范大学学报(自然科学版), 2019, 18(3): 256-260. [3] 孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治, 2016, 38(6): 50-53. [4] 宋菁. 典型铬渣污染场地调查与修复技术筛选[D]. 青岛: 青岛理工大学, 2010. [5] 徐成斌. 铬渣堆存区铬污染土壤特性的研究[J]. 安徽农业科学, 2010, 38(21): 11363-11364. [6] 张红娣, 熊昊, 孙强国. 黄石市某化工厂周围环境铬污染现况调查研究[J]. 公共卫生与预防医学, 2009, 20(4): 78-79. [7] LAN Y Q, DENG B L, KIM C, et al. Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions[J]. Environmental Science & Technology, 2005, 39(7): 2087-2094. [8] PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives, 1991, 92: 25-40. doi: 10.1289/ehp.919225 [9] LANGLOIS C L, JAMES B R. Chromium oxidation-reduction chemistry at soil horizon interfaces defined by iron and manganese oxides[J]. Soil Science Society of America Journal, 2015, 79(5): 1329-1339. doi: 10.2136/sssaj2014.12.0476 [10] RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium: A review[J]. Water Research, 1991, 25(7): 807-816. doi: 10.1016/0043-1354(91)90160-R [11] ZHONG J W, YIN W Z, LI Y T, et al. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture[J]. Water Research, 2017, 122: 536-544. doi: 10.1016/j.watres.2017.05.043 [12] PETERSEN S W. Evaluation of amendments for mending the ISRM barrier: Project 33[R]. Department of Energy, U.S., 2004. [13] FRUCHTER J. In-situ treatment of chromium-contaminated groundwater[J]. Environmental Science & Technology, 2002, 36(23): 464-472. [14] FRUCHTER J S, COLE C R, WILLIAMS M D, et al. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation[J]. Groundwater Monitoring & Remediation, 2000, 20(2): 66-77. [15] BOPARAI H K, COMFORT S, SHEA P J, et al. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments[J]. Chemosphere, 2008, 71(5): 933-941. doi: 10.1016/j.chemosphere.2007.11.001 [16] 郑建中, 石美, 李娟, 等. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085. [17] MESSER A, STORCH P, PALMER D. In situ remediation of a chromium contaminated site using calcium polysulfide[J]. Southwest Hydrology, 2003, 2(5): 7. [18] SHI M, LI J, LI X Y, et al. Reductive immobilization of hexavalent chromium by polysulfide-reduced lepidocrocite[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11920-11926. [19] GRAHAM M C, FARMER J G, ANDERSON P, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue[J]. Science of the Total Environment, 2006, 364(1/2/3): 32-44. [20] 许超, 邢轶兰, 刘鹏, 等. 多硫化钙修复Cr(VI)污染土壤的原理与应用[J]. 环境工程, 2018, 36(7): 133-137. [21] BEWLEY R J, CLARKE S. Field application of calcium polysulphide for ex situ treatment of soils contaminated with chromite ore processing residue[J]. Land Contamination Reclamation, 2010, 18(1): 1-12. doi: 10.2462/09670513.984 [22] CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(VI)-contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 650-657. [23] FOSS D L, CHARBONEAU B L. Groundwater remediation of hexavalent chromium along the columbia river at the Hanford site in Washington State, USA[C]//American Society of Mechanical Engineers. 14th International Conference on Environmental Remediation and Radioactive Waste Management Digital Collection, 2011: 483-492. [24] KLEINJAN W E, DE KEIZER A, JANSSEN A J. Kinetics of the chemical oxidation of polysulfide anions in aqueous solution[J]. Water Research, 2005, 39(17): 4093-4100. doi: 10.1016/j.watres.2005.08.006 [25] PETRE C F, LARACHI F. Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species[J]. Journal of Separation Science, 2006, 29(1): 144-152. doi: 10.1002/jssc.200500265 [26] FONSELIUS S, DYRSSEN D, YHLEN B. Methods of Seawater Analysis[M]. Third Edition. Germany: Wiley-VCH Verlag GmbH, Weinheim, 2007. [27] 张淼, 李亚青, 王敏新. 重金属锌在一维黄土土柱中的运移规律研究[J]. 西北水资源与水工程, 1997, 8(2): 28-34. [28] 王凯丽. 胶体作用下Zn/Cd在不同质地土壤中的运移实验及其数值模拟[D]. 青岛: 青岛大学, 2010. [29] MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: Column studies[J]. Desalination and Water Treatment, 2014, 56(5): 1162-1170. [30] TANG S C N, YIN K, LO I M C. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil[J]. Journal of Contaminant Hydrology, 2011, 125(1/2/3/4): 39-46. [31] CLESCERI L S, GREENBERG A E, EATON A D. Standard Methods for the Examination of Water and Wastewater[M]. 20th Edition. Washington D C: American Public Health Association(APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 1998. [32] HELLIGE K, POLLOK K, LARESE-CASANOVA P, et al. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces[J]. Geochimica et Cosmochimica Acta, 2012, 81: 69-81. doi: 10.1016/j.gca.2011.12.014 [33] PEIFFER S, BEHRENDS T, HELLIGE K, et al. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration[J]. Chemical Geology, 2015, 400: 44-55. doi: 10.1016/j.chemgeo.2015.01.023