-
铬是地下水、地表水和工业场所中最常检测到的重金属之一[1],在电镀、冶金、制革、颜料等行业得到了非常广泛的应用,形态主要有Cr(Ⅵ)和Cr(Ⅲ)。因Cr(Ⅵ)易溶于水,且在地下水中迁移速率快而被重点关注[2-3]。2018年,在全国10 168个国家级地下水水质监测点中,发现个别监测点中的六价铬、铅、锌、砷、汞和镉等重(类)金属超标。因此,防止Cr(Ⅵ)进入地下水中成为刻不容缓的研究课题。近年来,国内外对含土壤、地表和地下水系统中Cr(Ⅵ)的处理进行了大量的研究。目前,黄铁矿、零价铁等含铁矿物是还原处理Cr(Ⅵ)的高效、低成本的还原材料[4-6]。黄铁矿(FeS2)是地球表面较丰富的天然铁硫矿物之一,一般是矿物分离后的尾矿废弃物[7]。作为土壤和地下水中活性铁还原剂之一,能有效去除地下水中的有机和无机污染物[3]。本研究将黄铁矿通过机械球磨的方法进行活化,使天然黄铁矿的粒径降至纳米级,从而提高黄铁矿反应活性[8],将其用于处理含铬土壤和地下水。可渗透反应屏障(permeable reactive barrier,PRB)是一种现代新型的地下水污染修复技术,这种被动修复技术因其在处理各种污染物方面的良好性能,尤其比其他现场技术成本更低,从而受到高度的关注[9]。PRB对于上游迁移而来的污染物羽流,可形成原位处理区,将污染物固定于该区域,阻止其到达下游[10]。在20世纪90年代初,多种材料已被作为PRBs的介质用来去除重金属、氯化溶剂、芳香烃和农药等[11]。
纳米天然黄铁矿晶体具有稳定性好且反应活性大的优点,适用于长效PRB工艺。目前,国内外关于用天然纳米黄铁矿去除重金属的研究较少。本研究将自然环境中大量存在的天然黄铁矿进行活化,制备具有小尺寸效应和活化表面的纳米黄铁矿,将其作为PRB介质,探索开发修复土壤和地下水中重金属原位固定技术,为纳米天然黄铁矿处理土壤和地下水中Cr(Ⅵ)及原位固定其他重金属提供参考。
纳米天然黄铁矿对土壤和地下水中铬的原位固定技术
In-situ fixation technology of chromium in soil and groundwater by nano-scale pyrite
-
摘要: 采用机械球磨活化方法制备了纳米级黄铁矿,将其作为可渗透反应屏障中的介质材料,用于原位固定土壤和地下水中的Cr(Ⅵ),通过柱实验研究了黄铁矿对Cr(Ⅵ)动态反应(吸附)和解吸附的性能,并结合高分辨率透射电子显微镜(TEM)、X射线衍射(XRD)等对黄铁矿材料进行了表征,同时对反应机理进行了探讨。结果表明:在纳米天然黄铁矿填充的PRB反应器中,FeS2能够有效地处理含铬废水并将Cr(Ⅵ)原位固定在土壤中;在反应过程中,1 g黄铁矿可处理50 mg·L−1的含铬废水1 854.4 mL,2 g的纳米级天然黄铁矿介质固定了约69.458 mg的Cr(VI);当铬溶液到达穿透点时,Cr(Ⅵ)去除率达到了99.9%。本研究成果可为纳米级天然黄铁矿处理土壤和地下水中Cr(Ⅵ)以及原位固定其他的重金属提供参考。Abstract: Nano-scale pyrite prepared by mechanical ball milling activation method was used as PRB medium material to in situ fix Cr(Ⅵ) in soil and groundwater. The column reaction was used to study the properties of dynamic reaction of Cr(Ⅵ) adsorption on pyrite and its desorption, and high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD) were used to characterize the pyrite material. Meanwhile, the reaction mechanism was discussed. The results showed that in the PRB reactor filled with nano-scale natural pyrite, FeS2 could effectively treat chromium-containing wastewater and in situ fix Cr(Ⅵ) in soil. During the reaction, 1 g pyrite could treat 1 854.4 mL chromium containing wastewater with initial Cr(Ⅵ) concentration of 50 mg·L−1. Approximately 69.458 mg of Cr(Ⅵ) could be fixed by 2 g of nano-scale natural pyrite medium. When the chromium solution reached the penetration point, its removal rate reached 99.9%. The study provides reference for the treatment and in situ fixation of Cr(Ⅵ) and other heavy metals in soil and groundwater by nano-scale natural pyrite.
-
Key words:
- nano-scale pyrite /
- permeable reactive barrier /
- adsorption /
- desorption /
- chromium
-
-
[1] LIU Y Y, MOU H Y, CHEN L Q, et al. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness[J]. Journal of Hazardous Materials, 2015, 298(15): 83-90. [2] GAN M, LI J Y, SUN S J, CAO Y Y, et al. The enhanced effect of acidithiobacillus ferrooxidans on pyrite based Cr(VI)reduction[J]. Chemical Engineering Journal, 2018, 341: 27-36. doi: 10.1016/j.cej.2018.02.014 [3] 周保学, 周定. 铬与人体健康[J]. 化学世界, 2000, 41(3): 164-168. doi: 10.3969/j.issn.0367-6358.2000.03.018 [4] KANTAR C, ARI C, KESKIN S. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure[J]. Water Research, 2015, 76: 66-75. doi: 10.1016/j.watres.2015.02.058 [5] CHON C M, KIM J G, MOOM H S. Evaluating the transportand removal of chromate using pyrite and biotite columns[J]. Hydrological Processes, 2007, 21(14): 1957-1967. doi: 10.1002/hyp.6408 [6] DOGAN NM, KANTAR C, GULCAN S, et al. Chromium (VI) bioremoval by pseudomonas bacteria: Role of microbial exudates for naturalattenuation and biotreatment of Cr(VI) contamination[J]. Environmental Science & Technology, 2011, 45(6): 2278-2285. [7] DIAO Z H, XU X R, LIU F M, et al. Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(VI) reduction: Performance and reaction mechanism[J]. Separation and Purification Technology, 2015, 154: 168-175. doi: 10.1016/j.seppur.2015.09.027 [8] 崔晋艳, 钱天伟, 丁庆伟, 等. 纳米级天然黄铁矿去除水中Cr6+, Cd2+和Pb2+[J]. 环境工程学报, 2016, 10(12): 7103-7108. doi: 10.12030/j.cjee.201507166 [9] GAEMINIA M, MOKHTARANI N. Remediation of nitrate-contaminated groundwater by PRB-electrokinetic integrated process[J]. Journal of Environmental Management, 2018, 222: 234-241. [10] STATHAM T M, STARK S C, SNAPE I, et al. A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at casey station, antarctica[J]. Chemosphere, 2016, 147: 368-375. doi: 10.1016/j.chemosphere.2015.12.133 [11] HUANG L H, LIU G F, DONG G H, et al. Reaction mechanism of zero-valent iron coupling with microbe to degrade tetracycline in permeable reactive barrier (PRB)[J]. Chemical Engineering Journal, 2017, 316: 525-533. doi: 10.1016/j.cej.2017.01.096 [12] 丁峰, 钱天伟, 丁庆伟, 等. 不同pH下纳米级天然黄铁矿对水中 $ {\rm{ReO}}_{\rm{4}}^{\rm{ - }}$ 的去除规律[J]. 环境工程学报, 2016, 10(1): 55-59. doi: 10.12030/j.cjee.20160109[13] GHAEMINIA M, MOKHTARANI N. Remediation of nitrate-contaminated groundwater by PRB-electrokinetic integrated process[J]. Journal of Environmental Management, 2018, 222: 234-241. [14] 黄树杰. 黄铁矿中杂质组分对硒(Ⅳ)在黄铁矿-水界面上吸附/还原作用的影响[D]. 广州: 广东工业大学, 2017. [15] 王玉雪, 童菊秀, 李壁君. 土壤中Cr(VI)吸附规律的研究[J]. 排灌机械工程学报, 2019, 37(9): 1-11. [16] BANKS M K, SCHWAB A P, HENDERSON C. Leaching and reduction of chromium in soil as affected by soil organic content and plants[J]. Chemosphere, 2006, 62(2): 255-264. doi: 10.1016/j.chemosphere.2005.05.020 [17] KANTAR C, ARI C, KESKIN S, et al. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: Batch, spectroscopic and column experiments[J]. Journal of Contaminant Hydrology, 2015, 174: 28-38. doi: 10.1016/j.jconhyd.2015.01.001 [18] KANTAR C. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: Implications for catalytic chromium (VI) treatment[J]. Water Science and Technology, 2016, 74(1): 99-109. doi: 10.2166/wst.2016.182 [19] 卢龙,, 王汝成, 薛纪越. 铁矿表面次生色: 氧化程度的标志[J]. 矿物学报, 2002, 22(3): 211-215. doi: 10.3321/j.issn:1000-4734.2002.03.005 [20] 卢龙, 薛纪越, 陈繁荣, 等. 黄铁矿表面溶解--不容忽视的研究领域[J]. 岩石矿物学杂志, 2005, 24(6): 666-670. doi: 10.3969/j.issn.1000-6524.2005.06.033 [21] KANTAR C, ORAL O, OZ N A. Ligand enhanced pharmaceutical wastewater treatment with Fenton process using pyrite as the catalyst: column experiments[J]. Chemosphere, 2019, 237: 124440. doi: 10.1016/j.chemosphere.2019.124440 [22] LIN Y T, HUANG C P. Reduction of chromium(VI) by pyrite in dilute aqueous solutions[J]. Separation and Purification Technology, 2008, 63(1): 191-199. doi: 10.1016/j.seppur.2008.05.001