[1] |
GUERTIN J, JACOBS J A, AVAKIAN C P, et al. Chromium(VI) Handbook[M]. First Edition. Florida: CRC Press, 2004.
|
[2] |
刘磊, 王宇峰, 李慧, 等. 某铬渣污染场地不同粒径土壤中六价铬的分布特征及其淋洗修复工艺[J]. 杭州师范大学学报(自然科学版), 2019, 18(3): 256-260.
|
[3] |
孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治, 2016, 38(6): 50-53.
|
[4] |
宋菁. 典型铬渣污染场地调查与修复技术筛选[D]. 青岛: 青岛理工大学, 2010.
|
[5] |
徐成斌. 铬渣堆存区铬污染土壤特性的研究[J]. 安徽农业科学, 2010, 38(21): 11363-11364.
|
[6] |
张红娣, 熊昊, 孙强国. 黄石市某化工厂周围环境铬污染现况调查研究[J]. 公共卫生与预防医学, 2009, 20(4): 78-79.
|
[7] |
LAN Y Q, DENG B L, KIM C, et al. Catalysis of elemental sulfur nanoparticles on chromium(VI) reduction by sulfide under anaerobic conditions[J]. Environmental Science & Technology, 2005, 39(7): 2087-2094.
|
[8] |
PALMER C D, WITTBRODT P R. Processes affecting the remediation of chromium-contaminated sites[J]. Environmental Health Perspectives, 1991, 92: 25-40. doi: 10.1289/ehp.919225
|
[9] |
LANGLOIS C L, JAMES B R. Chromium oxidation-reduction chemistry at soil horizon interfaces defined by iron and manganese oxides[J]. Soil Science Society of America Journal, 2015, 79(5): 1329-1339. doi: 10.2136/sssaj2014.12.0476
|
[10] |
RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium: A review[J]. Water Research, 1991, 25(7): 807-816. doi: 10.1016/0043-1354(91)90160-R
|
[11] |
ZHONG J W, YIN W Z, LI Y T, et al. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture[J]. Water Research, 2017, 122: 536-544. doi: 10.1016/j.watres.2017.05.043
|
[12] |
PETERSEN S W. Evaluation of amendments for mending the ISRM barrier: Project 33[R]. Department of Energy, U.S., 2004.
|
[13] |
FRUCHTER J. In-situ treatment of chromium-contaminated groundwater[J]. Environmental Science & Technology, 2002, 36(23): 464-472.
|
[14] |
FRUCHTER J S, COLE C R, WILLIAMS M D, et al. Creation of a subsurface permeable treatment zone for aqueous chromate contamination using in situ redox manipulation[J]. Groundwater Monitoring & Remediation, 2000, 20(2): 66-77.
|
[15] |
BOPARAI H K, COMFORT S, SHEA P J, et al. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments[J]. Chemosphere, 2008, 71(5): 933-941. doi: 10.1016/j.chemosphere.2007.11.001
|
[16] |
郑建中, 石美, 李娟, 等. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7): 3077-3085.
|
[17] |
MESSER A, STORCH P, PALMER D. In situ remediation of a chromium contaminated site using calcium polysulfide[J]. Southwest Hydrology, 2003, 2(5): 7.
|
[18] |
SHI M, LI J, LI X Y, et al. Reductive immobilization of hexavalent chromium by polysulfide-reduced lepidocrocite[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11920-11926.
|
[19] |
GRAHAM M C, FARMER J G, ANDERSON P, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue[J]. Science of the Total Environment, 2006, 364(1/2/3): 32-44.
|
[20] |
许超, 邢轶兰, 刘鹏, 等. 多硫化钙修复Cr(VI)污染土壤的原理与应用[J]. 环境工程, 2018, 36(7): 133-137.
|
[21] |
BEWLEY R J, CLARKE S. Field application of calcium polysulphide for ex situ treatment of soils contaminated with chromite ore processing residue[J]. Land Contamination Reclamation, 2010, 18(1): 1-12. doi: 10.2462/09670513.984
|
[22] |
CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(VI)-contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 650-657.
|
[23] |
FOSS D L, CHARBONEAU B L. Groundwater remediation of hexavalent chromium along the columbia river at the Hanford site in Washington State, USA[C]//American Society of Mechanical Engineers. 14th International Conference on Environmental Remediation and Radioactive Waste Management Digital Collection, 2011: 483-492.
|
[24] |
KLEINJAN W E, DE KEIZER A, JANSSEN A J. Kinetics of the chemical oxidation of polysulfide anions in aqueous solution[J]. Water Research, 2005, 39(17): 4093-4100. doi: 10.1016/j.watres.2005.08.006
|
[25] |
PETRE C F, LARACHI F. Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species[J]. Journal of Separation Science, 2006, 29(1): 144-152. doi: 10.1002/jssc.200500265
|
[26] |
FONSELIUS S, DYRSSEN D, YHLEN B. Methods of Seawater Analysis[M]. Third Edition. Germany: Wiley-VCH Verlag GmbH, Weinheim, 2007.
|
[27] |
张淼, 李亚青, 王敏新. 重金属锌在一维黄土土柱中的运移规律研究[J]. 西北水资源与水工程, 1997, 8(2): 28-34.
|
[28] |
王凯丽. 胶体作用下Zn/Cd在不同质地土壤中的运移实验及其数值模拟[D]. 青岛: 青岛大学, 2010.
|
[29] |
MYSTRIOTI C, XENIDIS A, PAPASSIOPI N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: Column studies[J]. Desalination and Water Treatment, 2014, 56(5): 1162-1170.
|
[30] |
TANG S C N, YIN K, LO I M C. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil[J]. Journal of Contaminant Hydrology, 2011, 125(1/2/3/4): 39-46.
|
[31] |
CLESCERI L S, GREENBERG A E, EATON A D. Standard Methods for the Examination of Water and Wastewater[M]. 20th Edition. Washington D C: American Public Health Association(APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 1998.
|
[32] |
HELLIGE K, POLLOK K, LARESE-CASANOVA P, et al. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces[J]. Geochimica et Cosmochimica Acta, 2012, 81: 69-81. doi: 10.1016/j.gca.2011.12.014
|
[33] |
PEIFFER S, BEHRENDS T, HELLIGE K, et al. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration[J]. Chemical Geology, 2015, 400: 44-55. doi: 10.1016/j.chemgeo.2015.01.023
|