-
抗生素是一类新兴污染物[1]。氟喹诺酮类抗生素(FQs)广泛用于人和动物的治疗[2-3],通过制药企业和污水处理厂排放进入水环境且以痕量浓度存在(ng·L−1~μg·L−1)[4-6],因其近年来在环境水体中被频繁检出而日益被关注。目前,FQs的去除主要采用各种物理化学方法,如高级氧化[7]、生物降解[8]、膜过滤[9]、吸附[10]等。与其他方法相比,吸附法具有成本低、操作简单、无有害副产物等优点,被认为是最有效的去除方法之一。FQs具有疏水性官能团、氢键受体和供体,在水中以离子形态存在,因此,疏水作用、氢键作用和静电相互作用是吸附去除FQs的主要机制。YAO等[10]利用污泥物化处理得到的衍生物质来吸附氟喹诺酮类抗生素,但是处理过后的生物质材料比表面积和孔容较小,导致吸附容量和吸附效率较低。多壁碳纳米管[11]、生物质炭[12]、树脂[13]、石墨烯[14]、MOFs[15]及其改性产物已被报道用于去除FQs,但因吸附容量有限、效率偏低、无选择性、吸附剂分离回收难等缺点限制了其广泛应用。研制解决上述缺点的高效吸附剂将是未来吸附技术发展的主要方向。
有序介孔硅材料以其独特的孔道结构、均匀的孔径分布、高比表面积、化学惰性以及易修饰的孔道内表面等优点[16],在给水处理和废水处理中受到越来越多的关注。有序介孔硅材料的孔道内表面能提供大量的修饰位点,可以根据不同污染物的特性进行选择性修饰[17-18],并可以通过氢键作用、静电作用和亲疏水作用来去除水中各种有机污染物[19],因而被认为是一种很有前景的吸附剂。GAO等[20]合成了多种功能化介孔硅用于吸附环丙沙星,但无法实现从水中分离回收。CARTER等[1]和WANG等[3]合成了具有较高吸附能力的功能化磁性介孔硅,以去除水中的有机污染物,但合成材料的步骤却较为复杂。
本研究采用“一锅法”成功地制备了功能化磁性介孔硅,并首次将其用于对FQs的吸附去除。利用傅里叶红外光谱(FT-IR)、X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、振动样品磁力计(VSM)、Zeta电位分析、N2吸附-脱附等温线等手段对功能化磁性介孔硅进行了分析表征,并通过分析吸附等温线、动力学参数,系统探讨了功能化磁性介孔硅去除ENR、PEF和CIP的吸附机理。该改性介孔硅材料可通过简便的方法合成,并易于通过磁铁进行分离,对FQs具有较高的吸附容量和吸附效率,该研究为吸附去除污水中抗生素提供了参考。
烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附
Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics
-
摘要: 为了提高介孔硅材料对抗生素的吸附性能和简化材料合成步骤,在纯介孔硅(UMS)的基础上,使用“一锅法”合成了烷基改性介孔硅(FMS)和核壳磁性烷基改性介孔硅(MMS),并系统地研究了这3种吸附剂对恩诺沙星(ENR)、培氟沙星(PEF)和环丙沙星(CIP)3种氟喹诺酮类抗生素(FQs)的吸附性能。批次吸附实验结果表明,改性材料的吸附容量是未改性材料的5倍,且对氟喹诺酮类抗生素具有更高的吸附容量和吸附效率, 对CIP、PEF和ENR的最大吸附容量分别为201.52、275.46和286.35 mg·g−1,并且在10 min内可以达到90%以上的去除率。溶液的pH、腐殖酸浓度和离子强度对吸附过程的影响实验结果表明,MMS在pH为中性时可以达到最大吸附容量,且在高腐殖酸浓度下仍保持较高的吸附容量。回收再生实验结果表明,MMS具有良好的稳定性且吸附剂易于与溶液分离。进一步分析可知,静电作用和疏水作用是3种抗生素与MMS之间吸附的主要驱动力,使得MMS对抗生素具有优异的吸附性能。以上研究结果可为吸附去除污水中抗生素提供参考。Abstract: In order to improve the adsorption performance of mesoporous silicon materials to antibiotics and simplify the material synthesis steps, the functionalized mesoporous silica (FMS) and core-shell magnetic functionalized mesoporous silica (MMS) were synthesized from unfunctionalized mesoporous silica (UMS) by one-pot reaction, and their adsorption performance on enrofloxacin (ENR), pefloxacin (PEF) and ciprofloxacin (CIP), three fluoroquinolone antibiotics (FQs), were systematically investigated. Results based on batch experiments indicated that the adsorption capacities of the functionalized materials were five times higher than that of UMS, and the functionalized materials had higher adsorption capacities and efficiencies for FQs, the maximum adsorption capacities toward CIP, PEF and ENR were 201.52, 275.46 and 286.35 mg·g−1, respectively, above 90% removal efficiencies occurred within 10 min. It was also found that MMS had the maximum adsorption capacity at neutral pHs and maintained high adsorption capacity at the high humic acid concentration. The regeneration experiment indicated that MMS had good stability and easy-separation from aquatic matrix. Further analysis showed that electrostatic interaction and hydrophobic interaction were the main driving forces for FQ removal by MMS, which enabled MMS to possess an excellent adsorption toward FQ. The study provides a reference for the adsorption and removal of antibiotics in sewage.
-
表 1 3种氟喹诺酮类抗生素的理化性质
Table 1. Physicochemical properties of three fluoroquinolones
抗生素 分子式 分子质量/Da 一级解离
常数pKa1二级解离
常数pKa2ENR C19H22FN3O3 359.46 5.5 7.2 PEF C17H20FN3O3 333.35 5.5 7.1 CIP C17H18FN3O3 331.34 5.6 8.8 表 2 合成材料的结构参数
Table 2. Textural parameters of the synthesized materials
吸附剂 BET比表面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm UMS 805.01 1.39 6.79 FMS 462.21 0.94 7.79 MMS 1 104.71 1.30 4.58 表 3 MMS吸附抗生素的伪一级和伪二级动力学模型参数
Table 3. Kinetic parameters of the pseudo-first-order model, pseudo-second-order model for FQs adsorption
抗生素 伪一级动力学模型 伪二级动力学模型 qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k1/(g·(mg·min)−1) R2 CIP 95.96 0.72 0.968 5 99.70 0.014 9 0.994 5 PEF 133.03 0.34 0.953 8 140.75 0.004 2 0.993 1 ENR 142.48 0.46 0.976 2 149.21 0.005 8 0.998 2 表 4 MMS吸附3种抗生素的等温吸附模型参数
Table 4. Isothermal adsorption model parameters for adsorption of three FQs on MMS
抗生素 Langmuir 模型 Freundlich 模型 qm/(mg·g−1) kL R2 kF n R2 CIP 201.52 0.12 0.995 4 67.01 5.86 0.975 8 PEF 275.46 0.18 0.994 6 106.53 4.72 0.976 1 ENR 286.35 0.31 0.994 3 137.14 4.20 0.971 5 表 5 MMS与其他材料的吸附效果对比
Table 5. Comparison of the adsorption ability between MMS and other materials
吸附剂 吸附质 pH 平衡时间/h qm/(mg·g−1) 来源 石墨烯-钛纳米管 ENR 5.0 5.0 13.40 [31] 多壁碳纳米管 PEF 7.0 2.0 45.16 [33] 纳米氧化石墨烯 CIP 6.5 0.5 2.22 [34] 改性NiFe2O4中孔微球 ENR 5.0 1.0 1.71 [35] 改性NiFe2O4中孔微球 CIP 5.0 1.0 1.72 [35] 改性MS-NiFe2O4中孔微球 ENR 5.0 1.0 14.49 [35] 改性MS-NiFe2O4中孔微球 CIP 5.0 1.0 14.45 [35] 改性磁性生物质炭 ENR 3.0 12.0 7.19 [36] 改性磁性生物质炭 PEF 3.0 12.0 6.94 [36] 改性磁性生物质炭 CIP 3.0 12.0 8.37 [36] 多巴胺改性磁性纳米材料 CIP 7.0 4.0 16.5 [37] 烷基改性磁性介孔硅 ENR 6.0 0.5 286.35 本研究 烷基改性磁性介孔硅 PEF 6.0 0.5 275.46 本研究 烷基改性磁性介孔硅 CIP 7.0 0.5 201.52 本研究 -
[1] CARTER D L, DOCHERTY K M, GILL S A, et al. Antibiotic resistant bacteria are widespread in songbirds across rural and urban environments[J]. Science of the Total Environment, 2018, 627: 1234-1241. doi: 10.1016/j.scitotenv.2018.01.343 [2] HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar[J]. Science of the Total Environment, 2018, 616-617: 1384-1391. doi: 10.1016/j.scitotenv.2017.10.177 [3] WANG L, QIANG Z M, LI Y G, et al. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 2017, 56: 263-271. doi: 10.1016/j.jes.2016.10.006 [4] 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662. doi: 10.3969/j.issn.1671-0460.2019.11.054 [5] 廖全山. 我国抗生素滥用现状、原因及对策综述[J]. 世界最新医学信息文摘, 2016, 57(16): 41-42. [6] BU Q W, WANG B, HUANG J, et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review[J]. Journal of Hazardous Materials, 2013, 262: 189-211. doi: 10.1016/j.jhazmat.2013.08.040 [7] 张海璇, 刘娟, 欧桦瑟. 紫外-过硫酸盐降解水中环丙沙星动力学和效果[J]. 水处理技术, 2017, 43(5): 43-47. [8] 刘欣然, 李明雪, 张博, 等. 纤维素复合膜吸附处理盐酸环丙沙星[J]. 现代化工, 2019, 39(6): 166-171. [9] AHMED M J, THEYDAN S K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 219-226. doi: 10.1016/j.jtice.2013.05.014 [10] YAO H, LU J, WU J, et al. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: Role of the sludge source[J]. Water, Air & Soil Pollution, 2013, 224(1): 1370-1378. [11] YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. doi: 10.1016/j.chemosphere.2016.03.083 [12] 王吻, 马秀兰, 顾芳宁, 等. 生物质炭及草炭吸附模拟废水中恩诺沙星特性的研究[J]. 中国抗生素杂志, 2019, 44(7): 880-886. doi: 10.3969/j.issn.1001-8689.2019.07.019 [13] WANG W, CHENG J D, JIN J, et al. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins[J]. Scientific Reports, 2016, 6(1): 30331. doi: 10.1038/srep30331 [14] TANG Y L, GUO H G, XIAO L, et al. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 424: 74-80. [15] WU G G, MA J P, LI J H, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions[J]. Journal of Colloid and Interface Science, 2018, 528: 360-371. doi: 10.1016/j.jcis.2018.05.105 [16] GIBSON L T. Mesosilica materials and organic pollutant adsorption: Part B. Removal from aqueous solution[J]. Chemical Society Reviews, 2014, 43(15): 5173-5182. doi: 10.1039/C3CS60095E [17] DIAGBOYA P N, OLU-OWOLABI B I, ADEBOWALE K O. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: Batch and modeling studies[J]. Journal of Environmental Management, 2014, 146: 42-49. [18] KIM Y, LEE B, CHOO K, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 184-190. [19] WALCARIUS A, MERCIER L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants[J]. Journal of Materials Chemistry, 2010, 20(22): 4478-4511. doi: 10.1039/b924316j [20] GAO J S, ZHANG X Y, XU S T, et al. Clickable SBA-15 to screen functional groups for adsorption of antibiotics[J]. Chemistry, 2014, 9(3): 908-914. [21] LI Z B, HUANG D N, FU C, et al. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples[J]. Journal of Chromatography A, 2011, 1218(37): 6232-6239. doi: 10.1016/j.chroma.2011.06.109 [22] KONG A, WANG P, ZHANG H Q, et al. One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance[J]. Applied Catalysis A: General, 2012, 417-418: 183-189. doi: 10.1016/j.apcata.2011.12.040 [23] CIRIMINNA R, SCIORTINO M, Alonzo G, et al. From molecules to systems: Sol-gel microencapsulation in silica-based materials[J]. Chemical Reviews, 2011, 111(2): 765-789. doi: 10.1021/cr100161x [24] BOUKOUSSA B, ZEGHADA S, ABABSA G B, et al. Catalytic behavior of surfactant-containing-MCM-41 mesoporous materials for cycloaddition of 4-nitrophenyl azide[J]. Applied Catalysis A: General, 2015, 489: 131-139. doi: 10.1016/j.apcata.2014.10.022 [25] ZHANG X L, ZENG T, WANG S H, et al. One-pot synthesis of C18-functionalized core-shell magnetic mesoporous silica composite as efficient sorbent for organic dye[J]. Journal of Colloid and Interface Science, 2015, 448: 189-196. doi: 10.1016/j.jcis.2015.02.029 [26] ZHU L F, ZHU R L. Surface structure of CTMA+ modified bentonite and their sorptive characteristics towards organic compounds[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1/2/3): 19-24. [27] HAN S H, XU J, HOU W G, et al. Synthesis of high-quality MCM-48 mesoporous silica using gemini surfactant dimethylene-1, 2-bis (dodecyl dimethylammonium bromide)[J]. The Journal of Physical Chemistry B, 2004, 108(39): 15043-15048. doi: 10.1021/jp0477093 [28] LIU A M, HIDAJAT K, KAWI S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J]. Chemical Communications, 2000, 13: 1145-1146. doi: 10.1039/b002661l [29] NIU D, MA Z, LI Y S, et al. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. Journal of the American Chemical Society, 2010, 132(43): 15144-15147. doi: 10.1021/ja1070653 [30] XIA X R, MONTEIRO-RIVIERE N A, MATHUR S, et al. Mapping the surface adsorption forces of nanomaterials in biological systems[J]. ACS Nano, 2011, 5(11): 9074-9081. doi: 10.1021/nn203303c [31] ANIRUDHAN T S, SHAINY F, CHRISTA J. Synthesis and characterization of polyacrylic acid-grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies[J]. Journal of Hazardous Materials, 2017, 324(Pt B): 117-130. [32] 桂洪杰, 周亮, 马嫱, 等. 不同吸附模型分析天然有机物的吸附特征[J]. 化学工程师, 2019, 33(5): 85-90. [33] CHEN B L, ZHU L Z, ZHU J X, et al. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds[J]. Environmental Science & Technology, 2005, 39(16): 6093-6100. [34] ALICANOGLU P, SPONZA D T. Removal of ciprofloxacin antibiotic with nano graphene oxide magnetite composite: Comparison of adsorption and photooxidation processes[J]. Desalination and Water Treatment, 2017, 63: 293-307. doi: 10.5004/dwt.2017.20176 [35] LIU X Y, LIU M Y, ZHANG L. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere[J]. Journal of Hazardous Materials, 2018, 511: 135-144. [36] LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environment Science and Pollution Research, 2018, 25: 1136-1148. [37] MALIK R, GOYAL A, YADAV S, et al. Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations[J]. Journal of Hazardous Materials, 2019, 364: 621-634. doi: 10.1016/j.jhazmat.2018.10.058 [38] LI H B, ZHANG D, HAN X Z, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics[J]. Chemosphere, 2014, 95: 150-155. doi: 10.1016/j.chemosphere.2013.08.053 [39] GU C, KARTHIKEYAN K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(23): 9166-9173. [40] YAN W, HU S, JING C Y. Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid[J]. Journal of Colloid and Interface Science, 2012, 372(1): 141-147. doi: 10.1016/j.jcis.2012.01.016 [41] YAN W, ZHANG J F, JING C Y. Adsorption of Enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study[J]. Journal of Colloid and Interface Science, 2013, 390(1): 196-203. doi: 10.1016/j.jcis.2012.09.039 [42] ZHOU Q X, OUYANG S, AO Z, et al. Integrating biolayer interferometry, atomic force microscopy, and density functional theory calculation studies on the affinity between humic acid fractions and graphene oxide[J]. Environmental Science & Technology, 2019, 53(7): 3773-3781. [43] YAO N, LI C, YU J Y, et al. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water[J]. Separation and Purification Technology, 2019, 236: 116278. [44] TONG X, LI Y X, ZHANG F S, et al. Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process[J]. Environmental Pollution, 2019, 254: 112924. doi: 10.1016/j.envpol.2019.07.092 [45] AÇIŞLI Ö, KARACA S, GÜRSES A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions[J]. Applied Clay Science, 2017, 142: 90-99. doi: 10.1016/j.clay.2016.12.009 [46] YANG C, WU S C, CHENG J H, et al. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J]. Journal of Alloys and Compounds, 2016, 687: 804-812. doi: 10.1016/j.jallcom.2016.06.173 [47] ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review[J]. Water Research, 2017, 126: 385-398. doi: 10.1016/j.watres.2017.08.010 [48] PENG X M, HU F P, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study[J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095