Processing math: 100%

烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附

王琦, 胡碧波, 阳春, 李瑞, 张爽. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附[J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
引用本文: 王琦, 胡碧波, 阳春, 李瑞, 张爽. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附[J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
WANG Qi, HU Bibo, YANG Chun, LI Rui, ZHANG Shuang. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
Citation: WANG Qi, HU Bibo, YANG Chun, LI Rui, ZHANG Shuang. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019

烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附

    作者简介: 王琦(1994—),男,硕士研究生。研究方向:介孔硅材料的制备等。E-mail:1419841504@qq.com
    通讯作者: 胡碧波(1975—),女,博士,副教授。研究方向:水污染控制理论与技术。E-mail:b.hu@cqu.edu.cn
  • 基金项目:
    重庆市社会事业与民生保障项目(cstc2015shmszx0632,cstc2015shms-ztzx0053)
  • 中图分类号: X703.1

Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics

    Corresponding author: HU Bibo, b.hu@cqu.edu.cn
  • 摘要: 为了提高介孔硅材料对抗生素的吸附性能和简化材料合成步骤,在纯介孔硅(UMS)的基础上,使用“一锅法”合成了烷基改性介孔硅(FMS)和核壳磁性烷基改性介孔硅(MMS),并系统地研究了这3种吸附剂对恩诺沙星(ENR)、培氟沙星(PEF)和环丙沙星(CIP)3种氟喹诺酮类抗生素(FQs)的吸附性能。批次吸附实验结果表明,改性材料的吸附容量是未改性材料的5倍,且对氟喹诺酮类抗生素具有更高的吸附容量和吸附效率, 对CIP、PEF和ENR的最大吸附容量分别为201.52、275.46和286.35 mg·g−1,并且在10 min内可以达到90%以上的去除率。溶液的pH、腐殖酸浓度和离子强度对吸附过程的影响实验结果表明,MMS在pH为中性时可以达到最大吸附容量,且在高腐殖酸浓度下仍保持较高的吸附容量。回收再生实验结果表明,MMS具有良好的稳定性且吸附剂易于与溶液分离。进一步分析可知,静电作用和疏水作用是3种抗生素与MMS之间吸附的主要驱动力,使得MMS对抗生素具有优异的吸附性能。以上研究结果可为吸附去除污水中抗生素提供参考。
  • 汞 (Hg) 是环境中生物毒性很强的金属污染物,具有持久性、易迁移性和高度的生物富集性等特点[1]。汞可通过地球化学循环和食物链富集,给人类和生态环境造成极大危害[2]。目前,燃煤电厂排放的汞是最大的人为汞排放源。作为以煤为主的能源消费大国,我国汞污染较为严重[3-5],每年煤炭燃烧向大气中排放810 t汞,占各种人为源汞排放总量的35%[6]。2013年,《关于汞的水俣公约》规定了汞的长期减排控制措施。我国现行的《火电厂大气污染物排放标准》也对汞的排放控制提出了明确限值[7],即自2015年起全面执行火电厂汞排放质量浓度不超过30 μg·m−3的规定。煤炭燃烧产生的汞有单质汞 (Hg0) 、氧化汞 (Hg2+) 和颗粒汞 (Hgp) 3种形态。Hg2+易溶于水,故可通过湿法脱硫设备去除[8];HgP易吸附在尘粒、飞灰颗粒表面,可通过除尘装置捕获去除。然而,Hg0因具有较高的挥发性 (2.46×10−1 Pa,25 ℃) 和较低的水溶性 (6×10−5 g·L−1,25 ℃) ,极易在大气中通过长距离运输而造成全球性汞污染,为最难控制的汞形态[9]。因此,有效控制Hg0是实现汞污染减排的关键。

    催化脱除Hg0是一种行之有效的方法。传统选择性催化还原 (selective catalytic reduction,SCR) 催化剂 (V2O5-MoO3/TiO2和V2O5-WO3/TiO2) 在催化还原NOx的同时,可将Hg0氧化为Hg2+,并进一步利用后续脱硫装置进行协同脱除,从而提高设备经济性,因此被认为是应用前景良好的控制技术[10-11]。然而,SCR脱硝系统通常布置在高温、高尘、高酸性气体环境中,会降低催化剂的使用寿命[12]。由于其较高的工作温度,因而适用于非电行业的中低温催化氧化技术受到关注。目前,中低温钒钛SCR催化剂催化氧化Hg0,易受烟气组分 (如O2、NO、NH3、HCl、SO2、H2O) 和温度影响[13-16]。烟气中O2和NO可提供活性氧物种,从而促进Hg0的氧化。NH3会与Hg0竞争吸附催化剂活性位点,进而抑制Hg0氧化[17-20]。然而,烟气中SO2对Hg0氧化的影响机理还存在较大争议。有研究表明,SO2对Hg0的氧化表现为促进作用[21-22]。一方面,在O2存在的情况下,低浓度SO2会氧化生成SO3,与Hg0反应生成HgSO4;另一方面,SO2吸附在催化剂表面生成硫酸盐,可为Hg0氧化提供活性中心。然而,在某些情况下,SO2会与催化剂表面晶格氧反应生成硫酸盐和亚硫酸盐,使得催化剂表面活性氧位点减少,从而抑制Hg0氧化[23-26]。除此之外,多烟气组分共存时,Hg0的脱除机理尚不明确。

    现有研究中,Cu作为活性组分,具有良好的氧化还原性[27]和抗硫性[28],添加到催化剂表面可极大地提升Hg0氧化效率。本研究以低温V2O5-MO3/TiO2脱硝催化剂为基础配方、Cu2O为改性组分,采用浸渍法制备Cu2O-V2O5-MoO3/TiO2催化剂,通过固定床反应器考察O2、NO、NH3、HCl、SO2、H2O等烟气组分对Hg0氧化性能的影响;并在此基础上,进一步探讨多烟气组分共存条件下Hg0的脱除机理,以期为SCR脱硝催化剂协同汞氧化提供参考。

    所用催化剂由质量分数为3%的V2O5、质量分数为6% MoO3、Cu2O (质量分数为0~10%) 和TiO2组成。催化剂的制备步骤:称取定量偏钒酸铵、草酸、磷酸铵、钼酸铵、氧化亚铜和钛白粉溶于50 mL去离子水中,恒温水浴搅拌2 h,所得浆液置于105 ℃烘箱中3 h烘干水分。随后,将样品放入马弗炉中,在250 ℃空气气氛下焙烧1 h,之后在490 ℃下焙烧3 h,得到Cu2O负载量分别为0、1%、2%、6%、10%的Cu2O-V2O5-MoO3/TiO2催化剂,将其分别标记为0CuVMT、1CuVMT、2CuVMT、6CuVMT、10CuVMT。所有样品过60~80目 (0.180~0.250 mm) 筛备用。

    使用美国Micromeritics公司生产的ASAP2020低氮吸附仪测定催化剂比表面积、孔容和孔径。其中,比表面积通过Brunauer-Emmett-Teller (BET)方法计算获得,孔容和孔径采用Barret-Joyner-Halenda (BJH)方法计算获得。

    使用美国赛默飞世尔生产的Thermo Scientific K-Alpha型X射线光电子能谱仪进行X射线光电子能谱(XPS)分析,射线光源采用单色化AlKa源 (Mono AlKa,能量为1486.6eV) 。

    H2程序升温还原(H2-TPR)实验在AutoChem II 2920型化学吸附仪(Micrometritics Co.)上进行。实验步骤如下:取50 mg样品(40~60目),在纯氧气氛下400 ℃预处理30 min;降至室温后用He吹扫15 min;然后通入体积分数为10% H2/Ar混合气,待仪器基线平稳后,以10 ℃·min−1速率升温至600 ℃,采用TCD检测耗氢量。

    催化剂性能评价装置主要由模拟烟气、固定床反应装置、汞检测系统和尾气处理4部分组成 (见图1) 。其中,模拟烟气包括Hg0、O2、NO、NH3、HCl、SO2及平衡气Ar,烟气总流量为1 L·min−1。气体流量采用质量流量计精确控制。汞蒸气由置于恒温水浴锅中的汞渗透管产生,经载气Ar带出。固定床反应器使用内径4 mm石英管,中层添加石英砂作为支撑,采用管式电炉控制催化剂层反应温度。进出口Hg0浓度使用测汞仪 (RA-915+、LUMEX、美国) 进行监测,进出口NO和N2O体积分数由质谱仪 (DECRA、Hiden Analytical Ltd.,英国) 进行监测,SO2体积分数采用Testo 350烟气分析仪(Testo Co., Germany)检测。实验尾气经净化装置处理后排空。为避免汞蒸气沉积于管壁及水蒸气冷凝,实验管路均使用聚四氟乙烯管连接,并用伴热带加热至120 ℃。

    图 1  催化剂活性评价装置
    Figure 1.  Catalyst activity evaluation device

    活性评价实验过程:称取50 mg催化剂置于石英管内,用石英棉固定两端;使用Ar吹扫管路,待基线稳定后,将模拟烟气切换至旁路,检测反应器进口Hg0的初始浓度;15 min后将模拟烟气切换至反应器,检测出口Hg0浓度。Hg0氧化率(EHg)和NO转化率(ENO)计算方法见式 (1)~(2) 。

    EHg=(1[Hg0]out/[Hg0]in)×100% (1)
    ENO=(1[NO]out/[NO]in)×100% (2)

    式中:[Hg0]in和[Hg0]out分别为固定床反应器进口和出口Hg质量浓度,μg·m−3;[NO]in和[NO]out分别表示固定床反应器进口和出口NO的体积分数,%。

    不同Cu2O负载量催化剂的NO转化率和Hg0氧化率见图2。由于实际工业烟气中Hg0质量浓度较低,SCR净化装置空速为3 000~8 000 h−1。为缩短Hg0和NO在模拟烟气中达到反应平衡的时间,本研究将脱硝实验的空速设置为30 000 h−1,汞氧化实验的空速设置为1 600 000 h−1图2表明,在200 ℃时,不同Cu2O负载量的CuVMT催化剂的NO转化率表现为:0CuVMT(94.1%)>1CuVMT(91.2%)>2CuVMT(90.9%)>6CuVMT(88.5%)>10CuVMT(76.7%),而Hg0氧化率表现为:0CuVMT(64.1%)<1CuVMT(96.1%)<2CuVMT(99.9%)~10CuVMT(99.9%)。与0CuVMT和1CuVMT催化剂相比,2CuVMT催化剂的NO转化率分别降低了3.4%和0.32%,而N2O生成量没有明显提升,与此同时,Hg0氧化率分别提升了35.8%和3.8%。当Cu2O负载量超过2%之后,NO转化率继续降低,N2选择性也出现不同程度下降,而Hg0氧化率保持不变。因此,综合催化剂的NO转化率、Hg0氧化率、N2选择性及制备成本等几方面因素,最终选定2CuVMT催化剂作为脱硝协同汞氧化的最优配方。

    图 2  Cu2O负载量对CuVMT催化剂脱硝协同汞氧化性能的影响
    Figure 2.  Effect of Cu2O loading on denitridication and mercury oxidation performance over CuVMT catalysts

    工业烟气组分复杂,与Hg0相比,各烟气组分在气体浓度及分子偶极等方面占据优势,会优先与催化材料活性位点发生键合,进而严重影响Hg0的氧化。因此,有必要深入研究不同烟气组分对2CuVMT催化剂脱除Hg0性能的影响,进而阐明复杂组分下Hg0的脱除机理,所有反应时长均为10 h。

    在200 ℃下,O2体积分数对2CuVMT催化剂Hg0氧化率的影响见图3。在无氧条件下,2CuVMT催化剂的Hg0氧化率仅为11.3%。此时,Hg0处于氩气惰性气氛下,物理吸附态的Hg0会与催化剂表面晶格氧结合[14,29],生成HgO。但由于晶格氧含量有限,Hg0氧化性能不高。当向反应体系通入2.5%的O2后,催化剂对Hg0的氧化性能显著提升,达到91.5%。这是由于O2可再生催化剂表面吸附氧和晶格氧,生成新的含氧活性位点,从而促进Hg0的氧化[30]。随着O2体积分数继续增至12%,Hg0氧化率也逐渐增至99.9%。

    图 3  O2体积分数对2CuVMT催化剂Hg0氧化率的影响
    Figure 3.  Effect of O2 volume fraction on Hg0 oxidation rate over 2CuVMT catalyst

    NO体积分数对2CuVMT催化剂Hg0氧化率的影响见图4。当0.002 5% NO通入反应体系后,Hg0氧化率立即升至99.9%;当NO体积分数增至0.05%时,Hg0氧化率依然稳定在99.9%。这可能是由于吸附态NO与催化剂表面活性氧反应生成具有氧化性的NO+、NO2、NO2和NO3等活性中间体,可将Hg0氧化为Hg(NO3)2[14,31],进而促进了Hg0氧化。当反应体系中继续添加5% O2后,O2可补充NO消耗掉的催化剂表面晶格氧[32],故Hg0的氧化率依然保持在99.9%。

    图 4  NO体积分数对2CuVMT催化剂Hg0氧化率的影响
    Figure 4.  Effect of NO volume fratction on Hg0 oxidation rate over 2CuVMT catalyst

    NH3体积分数对2CuVMT催化剂Hg0氧化率的影响见图5。当烟气中加入0.005% NH3后,Hg0氧化率基本降至0。继续增加NH3体积分数至0.05%时,Hg0氧化率依然为0。这表明NH3对Hg0的氧化有强烈抑制作用。NH3会与Hg0发生强烈的竞争吸附[33],消耗催化剂表面晶格氧,从而抑制Hg0在催化剂表面发生氧化反应。反应过程如式 (3) 所示。

    图 5  NH3的体积分数对2CuVMT催化剂Hg0氧化率的影响
    Figure 5.  Effect of NH3 volume fraction on Hg0 oxidation rate over 2CuVMT catalyst
    NH3+ONH2-OH (3)

    为探究SCR气氛条件对Hg0氧化率的影响,在Ar+NH3的气氛下,考察向烟气中添加体积分数为5%的O2,或添加混合气体 (含体积分数为5%的O2+体积分数为0.05%的NO) 对催化剂Hg0氧化率的影响。当体积分数为5%的O2加入烟气中时,2CuVMT催化剂Hg0氧化率显著提升。这说明O2补充了NH3消耗的催化剂晶格氧,并部分抵消了NH3对Hg0氧化的负面影响[34]

    当NO、NH3和O2中的2种或3种组分以不同体积分数加入烟气时,各种添加方式下Hg0的氧化率表现为: (0.05% NO+5% O2) > (0.05% NH3+5% O2) > (0.05% NO+0.05% NH3+5% O2) > (0.05% NO+0.05% NH3) 。当烟气中通入混合气体 (0.05% NH3+0.05% NO) 时,Hg0氧化率为0。这表明此时NH3的抑制作用占主导地位,继续向烟气中加入5% O2后,Hg0氧化率升至57.3%。对比 (NH3+O2) 和 (NO+NH3+O2) 2种混合气体,反应体系中通入NO后,Hg0氧化率反而下降。这表明在此气氛下,发生了Hg2+被还原为Hg0的副反应。为探究副反应的发生机制,在200 ℃下通入混合气体 (10% O2+105 μg·m−3 Hg0+Ar) 3 h,使得催化剂表面沉积HgOx。之后用Ar吹扫,当Hg0质量浓度降为0后 (图6中箭头处) ,分别在烟气中通入0.05% NO、0.05% NH3、 (0.05% NH3+0.05% NO) 和 (0.05% NH3+0.05% NO+5% O2) 。这表明NH3和 (NO+NH3) 对HgOx存在还原作用,并且NO+NH3的还原性更强,而加入O2可在一定程度上抑制HgOx还原反应。因此,烟气中通入混合气体 (0.05% NH3+0.05% NO+5% O2) 后,仅有少量HgOx被还原。反应过程如式 (4)~(5) 所示。其中,x为1或1/2。

    图 6  NO和NH3对HgOx的还原
    Figure 6.  Reduction of HgOx by NO and NH3
    2xNH3+3HgOxxN2+3Hg0+3xH2O (4)
    2xNO+2xNH3+HgOx2xN2+Hg0+3xH2O (5)

    HCl是影响Hg0氧化反应的重要因素[35]。HCl的体积分数对2CuVMT催化剂Hg0氧化率的影响见图7。当体积分数为0.000 1%的HCl添加到烟气中时,Hg0氧化率即可达到99.9%。随着HCl体积分数逐渐增至0.001%时,Hg0氧化率稳定在99.9%。这表明HCl对Hg0氧化有明显促进作用。这可能是由于HCl在催化剂表面形成化学吸附态的活性Cl物种,可直接将Hg0氧化生成HgCl2[36]

    图 7  HCl体积分数对2CuVMT催化剂Hg0氧化率的影响
    Figure 7.  Effect of HCl volume fraction on Hg0 oxidation rate over 2CuVMT catalyst

    SO2和H2O对2CuVMT催化剂Hg0氧化率的影响见图8。当烟气中添加0.001% SO2时,Hg0氧化率可达到37.5%。随着SO2体积分数增至0.01%时,Hg0氧化率提升至52.1%。这表明SO2对Hg0氧化有一定促进作用。这可能是由于SO2和Hg0在催化剂表面发生竞争吸附的同时,在晶格氧的作用下,SO2和O* (晶格氧) 反应生成SO3和硫酸根,进而与吸附态Hg0反应生成HgSO3或HgSO4[23-24],从而有利于Hg0的去除。当烟气中同时存在SO2和O2时,Hg0氧化率明显下降,此时,SO2和O2反应生成SO3,加快了与催化剂活性组分生成CuSO4,使得催化剂硫酸化,最终导致催化剂活性位点数量减少、Hg0氧化率下降[27-28]。在实际SCR工况下,体系还会含有一定量水分。因此,考察在烟气中 (SCR条件:Ar+5% O2+0.05% NO+0.05% NH3+0.001%HCl) 加入H2O和SO2后对2CuVMT催化剂Hg0氧化率的影响。当烟气中加入体积分数为5%的H2O后,Hg0的氧化效率由99.9%降为97.3%。这是由于H2O和Hg0会竞争吸附催化剂表面活性位点,导致氧化率下降。继续向烟气中添加0.05% SO2后,催化剂Hg0的氧化效率降至95.1%。

    图 8  SO2和H2O对2CuVMT催化剂Hg0氧化率的影响
    Figure 8.  Effect of SO2 and H2O on Hg0 oxidation rate over 2CuVMT catalyst

    反应温度是影响催化剂活性的重要因素。不同温度 (150~350 ℃) 对2CuVMT催化剂Hg0氧化率的影响见图9。随着反应温度的升高,2CuVMT催化剂Hg0氧化率呈现先平稳后降低的趋势。在150~250 ℃烟温范围内,Hg0氧化率保持在99.9%。然而,当温度升至300 ℃时,Hg0氧化率开始下降;在350 ℃时,Hg0氧化率进一步降至64.1%。参考文献[37]的研究结果,低温条件有利于Hg0吸附在催化剂表面参与氧化反应,而高温 (≥300 ℃) 则不利于Hg0在催化剂表面吸附,会使得参与氧化反应的Hg0质量浓度降低,从而导致Hg0的氧化被抑制。

    图 9  反应温度对2CuVMT催化剂Hg0氧化率的影响
    Figure 9.  Effect of reaction temperature rate on Hg0 oxidation over 2CuVMT catalyst

    1) BET分析。0CuVMT和2CuVMT催化剂的比表面积、孔容和介孔平均孔径见表1。在负载Cu2O后,催化剂的比表面积和孔容均呈下降趋势。其中,比表面积由0CuVMT的68.4 m2·g−1降至2CuVMT的57.3 m2·g−1,孔容由0.36 cm3·g−1 (0CuVMT) 略微降至0.33 cm3·g−1 (2CuVMT)。这表明添加Cu2O会堵塞催化剂部分孔道,导致催化剂比表面积和孔容降低。由于Cu2O堵塞了催化剂微孔,催化剂介孔平均孔径由0CuVMT催化剂的19 nm增至2CuVMT催化剂的21.3 nm。XU等[38]的研究结果表明,CuO/TiO2催化剂的比表面积、孔容、孔径与催化剂活性没有明显相关关系。

    表 1  CuVMT催化剂的比表面积及孔道结构
    Table 1.  Specific surface area and pore structure of CuVMT catalysts
    催化剂比表面积/ (m2·g−1) 孔容/ (cm3·g−1) 介孔平均孔径/nm
    0CuVMT68.40.3619.0
    2CuVMT57.30.3321.3
     | Show Table
    DownLoad: CSV

    2) XPS表征。为确定催化剂表面O、Cu和V元素的化学价态,对CuVMT催化剂进行了XPS光谱分析,测定结果见图10。不同催化剂反应前后样品的O 1s XPS光谱 (图10 (a) ) 显示出2种特征峰。其中,结合能为530~530.3 eV的特征峰为晶格氧 (Oβ) [39],而在532~532.3 eV的特征峰归属于化学吸附氧 (Oα) [40]。当负载2%Cu2O后,催化剂表面的化学吸附氧 (Oα) 占比 (Oα/ (Oα+Oβ) ) 由31.9%逐渐升至36.5%。这表明化学吸附氧对于Hg0的氧化具有更高的活性[41]

    图 10  CuVMT催化剂XPS能谱
    Figure 10.  XPS spectra of CuVMT catalysts

    CuVMT催化剂样品的V 2p XPS光谱 (图10 (b) ) 可分为516.4 eV和517.3 eV两个峰,分别对应V4+和V5+的特征峰[42-43]。随着Cu负载量的增加,催化剂中V5+/V4+的比例由155% (0CuVMT) 降至117% (2CuVMT) 。这说明Cu2O改性提高了催化剂表面V4+的含量。这可能是由于Cu2O将部分V5+还原为了V4+

    CuVMT催化剂反应前后样品的Cu2p XPS光谱 (图10 (c) ) 表明,催化剂表面Cu的主要价态为Cu+和Cu2+。其中,Cu+为Cu元素主要的存在形态,其对应的结合能为932.5eV和952.2eV,而结合能在935.7eV和954.6eV的特征峰归属于Cu2+[44]。结合V 2p XPS结果,Cu2O改性使得催化剂表面V4+增加。这说明在制备过程中催化剂表面的Cu+和V5+确实存在相互作用,发生反应V4++Cu2+↔V5++Cu+,使得催化剂表面产生不饱和化学键和氧空位[41],可有效增加催化剂表面化学吸附氧含量,与O 1s XPS结果相一致。

    3) H2-TPR表征。为阐明Cu改性对催化剂氧化还原性能的影响,对CuVMT催化剂进行了H2-TPR表征分析,测定结果见图11。0CuVMT催化剂在400~600 ℃出现了V5+和V4+的还原峰[45-46]。添加体积分数为2%的Cu2O改性后,催化剂原先V物种的还原峰大幅向低温方向偏移,且在154~263 ℃和300~400 ℃出现新的还原峰。其中,154~263 ℃的峰归属于Cu2+和Cu+的还原[47-48],300~400 ℃的峰为Cu-O-V物种的还原[47]。这表明添加Cu物种可增强催化剂表面Cu与V物种的交互作用,这与XPS结果相一致。总体来看,Cu改性后催化剂的还原峰整体向低温区迁移,H2的消耗量由0.036 mmol·g−1 (0CuVMT) 增至0.054 mmol·g−1 (2CuVMT) ,使得催化剂的氧化还原性能提高。

    图 11  CuVMT催化剂H2-TPR谱图
    Figure 11.  H2-TPR spectra of CuVMT catalysts

    基于上述研究结果,本研究中Hg0的脱除过程主要分为吸附和催化氧化2个阶段。在吸附阶段,气态Hg0物理吸附在催化剂表面,反应过程如式 (6) 所示。Ads表示物质的吸附态。

    Hg0(g)Hg0(ads) (6)

    Hg0(ads)与催化剂活性组分 (CuOx、V2O5) 中的晶格氧发生反应,生成HgO(ads)。与此同时,催化剂表面形成可由氧气补充的氧空位,反应过程如式 (7)~(8) 所示(M表示Cu或V)。

    MxOy+Hg0(ads)HgO(ads)+MxOy1 (7)
    2MxOy1+O22MxOy (8)

    当反应体系中通入NO时,NO可与催化剂晶格氧反应生成NO2等具有氧化性的活性中间产物,从而促进Hg0的氧化。反应过程如式 (9)~(12) 所示。

    NO(g)NO(ads) (9)
    MxOy+NO(ads)MxOy1+NO2 (10)
    NO2+Hg0(ads)HgO(ads)+NO (11)
    2NO2+2MxOy+Hg0(ads)Hg(NO3)2(ads)+2MxOy1 (12)

    当HCl通入反应体系时,HCl与催化剂活性组分反应生成活性Cl物种,进而与催化剂表面吸附态的Hg0(ads)反应,生成HgCl2。反应过程如式 (13)~(17) 所示。

    MxOy+2HClMxOy1Cl2+H2O (13)
    MxOy+HClMxOy12Cl+12H2O (14)
    MxOy1Cl2+Hg0(ads)MxOy1Cl+HgCl (15)
    MxOy12Cl+HgClMxOy12+HgCl2 (16)
    MxOy1Cl+HgClMxOy1+HgCl2 (17)

    当反应体系中存在SO2时,SO2可与晶格氧反应生成SO3,进而在催化剂表面与Hg0 (ads)发生催化氧化反应,生成HgSO4。反应过程如式 (18)~(20) 所示。

    SO2(g)SO2(ads) (18)
    Olattice+SO2(ads)SO3(ads) (19)
    Olattice+SO3(ads)+Hg0(ads)HgSO4(ads) (20)

    1) 通过对传统V2O5-MoO3/TiO2催化剂掺杂Cu2O改性,提高了催化剂在低温条件下Hg0的氧化率,Cu2O负载量为2%时,催化剂具有较好的脱硝协同氧化Hg0性能。

    2) 不同烟气组分对Hg0氧化率的影响分析发现,O2、NO、HCl、SO2对Hg0的氧化具有促进作用,而NH3会消耗催化剂表面晶格氧,从而抑制Hg0的氧化。在多组分烟气条件下,Hg0氧化率表现为ENO+O2>ENH3+O2>ENO+NH3+O2>ENO+NH3。在NH3和 (NO+NH3) 两种气氛下,会将HgOx还原为Hg0,使得Hg0氧化率降低。

    3) 随着温度由150 ℃升至250 ℃,Hg0氧化率一直维持在99.9%,进一步升温至350 ℃,Hg0氧化率则大幅下降。

    4) 结合BET、XPS和H2-TPR分析,经过Cu2O改性后部分催化剂表面微孔被堵塞,催化剂表面存在Cu和V的相互作用,使得催化剂表面产生不饱和化学键和氧空位,有效提升催化剂表面化学吸附氧含量和低温氧化还原性能,促进Hg0氧化。此时催化剂表面的氧化反应遵循Mars-Maessen机理,即Hg0优先吸附在催化剂表面与晶格氧发生反应。

  • 图 1  3种材料的傅里叶红外光谱

    Figure 1.  FT-IR spectra of three materials

    图 2  N2吸附-脱附等温线和孔径分布(内嵌图)

    Figure 2.  N2 sorption-desorption isotherms and pore size distribution (the inset)

    图 3  MMS的TEM和SEM图像

    Figure 3.  TEM and SEM images of MMS

    图 4  Fe3O4和 MMS的磁滞回线图

    Figure 4.  VSM of the Fe3O4 and MMS

    图 5  3种材料的小角和广角(内嵌图)XRD图

    Figure 5.  XRD patterns of low-angle and wide-angle(the inset) of synthesized materials

    图 6  MMS吸附3种抗生素的动力学拟合

    Figure 6.  Adsorption kinetics fitting of three FQs on MMS

    图 7  MMS吸附3种抗生素的等温线拟合

    Figure 7.  Adsorption isotherm model fitting of three FQs on MMS

    图 8  FQs的离子形态分布与pH的关系

    Figure 8.  Species distribution of FQs as a function of pH

    图 9  pH和Zeta电位对吸附的影响

    Figure 9.  Effect of pH and Zeta potential on adsorption

    图 10  腐殖酸浓度对吸附的影响

    Figure 10.  Effect of humic acid concentration on adsorption

    图 11  离子强度对吸附的影响

    Figure 11.  Effect of ionic strength on adsorption

    图 12  循环次数对吸附的影响

    Figure 12.  Effect of recycling number on adsorption

    表 1  3种氟喹诺酮类抗生素的理化性质

    Table 1.  Physicochemical properties of three fluoroquinolones

    抗生素分子式分子质量/Da一级解离常数pKa1二级解离常数pKa2
    ENRC19H22FN3O3359.465.57.2
    PEFC17H20FN3O3333.355.57.1
    CIPC17H18FN3O3331.345.68.8
    抗生素分子式分子质量/Da一级解离常数pKa1二级解离常数pKa2
    ENRC19H22FN3O3359.465.57.2
    PEFC17H20FN3O3333.355.57.1
    CIPC17H18FN3O3331.345.68.8
    下载: 导出CSV

    表 2  合成材料的结构参数

    Table 2.  Textural parameters of the synthesized materials

    吸附剂BET比表面积/(m2·g−1)孔容/(cm3·g−1)孔径/nm
    UMS805.011.396.79
    FMS462.210.947.79
    MMS1 104.711.304.58
    吸附剂BET比表面积/(m2·g−1)孔容/(cm3·g−1)孔径/nm
    UMS805.011.396.79
    FMS462.210.947.79
    MMS1 104.711.304.58
    下载: 导出CSV

    表 3  MMS吸附抗生素的伪一级和伪二级动力学模型参数

    Table 3.  Kinetic parameters of the pseudo-first-order model, pseudo-second-order model for FQs adsorption

    抗生素伪一级动力学模型伪二级动力学模型
    qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k1/(g·(mg·min)−1)R2
    CIP95.960.720.968 599.700.014 90.994 5
    PEF133.030.340.953 8140.750.004 20.993 1
    ENR142.480.460.976 2149.210.005 80.998 2
    抗生素伪一级动力学模型伪二级动力学模型
    qe/(mg·g−1)k1/min−1R2qe/(mg·g−1)k1/(g·(mg·min)−1)R2
    CIP95.960.720.968 599.700.014 90.994 5
    PEF133.030.340.953 8140.750.004 20.993 1
    ENR142.480.460.976 2149.210.005 80.998 2
    下载: 导出CSV

    表 4  MMS吸附3种抗生素的等温吸附模型参数

    Table 4.  Isothermal adsorption model parameters for adsorption of three FQs on MMS

    抗生素Langmuir 模型Freundlich 模型
    qm/(mg·g−1)kLR2kFnR2
    CIP201.520.120.995 467.015.860.975 8
    PEF275.460.180.994 6106.534.720.976 1
    ENR286.350.310.994 3137.144.200.971 5
    抗生素Langmuir 模型Freundlich 模型
    qm/(mg·g−1)kLR2kFnR2
    CIP201.520.120.995 467.015.860.975 8
    PEF275.460.180.994 6106.534.720.976 1
    ENR286.350.310.994 3137.144.200.971 5
    下载: 导出CSV

    表 5  MMS与其他材料的吸附效果对比

    Table 5.  Comparison of the adsorption ability between MMS and other materials

    吸附剂吸附质pH平衡时间/hqm/(mg·g−1)来源
    石墨烯-钛纳米管ENR5.05.013.40[31]
    多壁碳纳米管PEF7.02.045.16 [33]
    纳米氧化石墨烯CIP6.50.52.22[34]
    改性NiFe2O4中孔微球ENR5.01.01.71[35]
    改性NiFe2O4中孔微球CIP5.01.01.72[35]
    改性MS-NiFe2O4中孔微球ENR5.01.014.49[35]
    改性MS-NiFe2O4中孔微球CIP5.01.014.45[35]
    改性磁性生物质炭ENR3.012.07.19[36]
    改性磁性生物质炭PEF3.012.06.94[36]
    改性磁性生物质炭CIP3.012.08.37[36]
    多巴胺改性磁性纳米材料CIP7.04.016.5[37]
    烷基改性磁性介孔硅ENR6.00.5286.35本研究
    烷基改性磁性介孔硅PEF6.00.5275.46本研究
    烷基改性磁性介孔硅CIP7.00.5201.52本研究
    吸附剂吸附质pH平衡时间/hqm/(mg·g−1)来源
    石墨烯-钛纳米管ENR5.05.013.40[31]
    多壁碳纳米管PEF7.02.045.16 [33]
    纳米氧化石墨烯CIP6.50.52.22[34]
    改性NiFe2O4中孔微球ENR5.01.01.71[35]
    改性NiFe2O4中孔微球CIP5.01.01.72[35]
    改性MS-NiFe2O4中孔微球ENR5.01.014.49[35]
    改性MS-NiFe2O4中孔微球CIP5.01.014.45[35]
    改性磁性生物质炭ENR3.012.07.19[36]
    改性磁性生物质炭PEF3.012.06.94[36]
    改性磁性生物质炭CIP3.012.08.37[36]
    多巴胺改性磁性纳米材料CIP7.04.016.5[37]
    烷基改性磁性介孔硅ENR6.00.5286.35本研究
    烷基改性磁性介孔硅PEF6.00.5275.46本研究
    烷基改性磁性介孔硅CIP7.00.5201.52本研究
    下载: 导出CSV
  • [1] CARTER D L, DOCHERTY K M, GILL S A, et al. Antibiotic resistant bacteria are widespread in songbirds across rural and urban environments[J]. Science of the Total Environment, 2018, 627: 1234-1241. doi: 10.1016/j.scitotenv.2018.01.343
    [2] HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar[J]. Science of the Total Environment, 2018, 616-617: 1384-1391. doi: 10.1016/j.scitotenv.2017.10.177
    [3] WANG L, QIANG Z M, LI Y G, et al. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 2017, 56: 263-271. doi: 10.1016/j.jes.2016.10.006
    [4] 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662. doi: 10.3969/j.issn.1671-0460.2019.11.054
    [5] 廖全山. 我国抗生素滥用现状、原因及对策综述[J]. 世界最新医学信息文摘, 2016, 57(16): 41-42.
    [6] BU Q W, WANG B, HUANG J, et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review[J]. Journal of Hazardous Materials, 2013, 262: 189-211. doi: 10.1016/j.jhazmat.2013.08.040
    [7] 张海璇, 刘娟, 欧桦瑟. 紫外-过硫酸盐降解水中环丙沙星动力学和效果[J]. 水处理技术, 2017, 43(5): 43-47.
    [8] 刘欣然, 李明雪, 张博, 等. 纤维素复合膜吸附处理盐酸环丙沙星[J]. 现代化工, 2019, 39(6): 166-171.
    [9] AHMED M J, THEYDAN S K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 219-226. doi: 10.1016/j.jtice.2013.05.014
    [10] YAO H, LU J, WU J, et al. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: Role of the sludge source[J]. Water, Air & Soil Pollution, 2013, 224(1): 1370-1378.
    [11] YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. doi: 10.1016/j.chemosphere.2016.03.083
    [12] 王吻, 马秀兰, 顾芳宁, 等. 生物质炭及草炭吸附模拟废水中恩诺沙星特性的研究[J]. 中国抗生素杂志, 2019, 44(7): 880-886. doi: 10.3969/j.issn.1001-8689.2019.07.019
    [13] WANG W, CHENG J D, JIN J, et al. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins[J]. Scientific Reports, 2016, 6(1): 30331. doi: 10.1038/srep30331
    [14] TANG Y L, GUO H G, XIAO L, et al. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 424: 74-80.
    [15] WU G G, MA J P, LI J H, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions[J]. Journal of Colloid and Interface Science, 2018, 528: 360-371. doi: 10.1016/j.jcis.2018.05.105
    [16] GIBSON L T. Mesosilica materials and organic pollutant adsorption: Part B. Removal from aqueous solution[J]. Chemical Society Reviews, 2014, 43(15): 5173-5182. doi: 10.1039/C3CS60095E
    [17] DIAGBOYA P N, OLU-OWOLABI B I, ADEBOWALE K O. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: Batch and modeling studies[J]. Journal of Environmental Management, 2014, 146: 42-49.
    [18] KIM Y, LEE B, CHOO K, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 184-190.
    [19] WALCARIUS A, MERCIER L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants[J]. Journal of Materials Chemistry, 2010, 20(22): 4478-4511. doi: 10.1039/b924316j
    [20] GAO J S, ZHANG X Y, XU S T, et al. Clickable SBA-15 to screen functional groups for adsorption of antibiotics[J]. Chemistry, 2014, 9(3): 908-914.
    [21] LI Z B, HUANG D N, FU C, et al. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples[J]. Journal of Chromatography A, 2011, 1218(37): 6232-6239. doi: 10.1016/j.chroma.2011.06.109
    [22] KONG A, WANG P, ZHANG H Q, et al. One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance[J]. Applied Catalysis A: General, 2012, 417-418: 183-189. doi: 10.1016/j.apcata.2011.12.040
    [23] CIRIMINNA R, SCIORTINO M, Alonzo G, et al. From molecules to systems: Sol-gel microencapsulation in silica-based materials[J]. Chemical Reviews, 2011, 111(2): 765-789. doi: 10.1021/cr100161x
    [24] BOUKOUSSA B, ZEGHADA S, ABABSA G B, et al. Catalytic behavior of surfactant-containing-MCM-41 mesoporous materials for cycloaddition of 4-nitrophenyl azide[J]. Applied Catalysis A: General, 2015, 489: 131-139. doi: 10.1016/j.apcata.2014.10.022
    [25] ZHANG X L, ZENG T, WANG S H, et al. One-pot synthesis of C18-functionalized core-shell magnetic mesoporous silica composite as efficient sorbent for organic dye[J]. Journal of Colloid and Interface Science, 2015, 448: 189-196. doi: 10.1016/j.jcis.2015.02.029
    [26] ZHU L F, ZHU R L. Surface structure of CTMA+ modified bentonite and their sorptive characteristics towards organic compounds[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1/2/3): 19-24.
    [27] HAN S H, XU J, HOU W G, et al. Synthesis of high-quality MCM-48 mesoporous silica using gemini surfactant dimethylene-1, 2-bis (dodecyl dimethylammonium bromide)[J]. The Journal of Physical Chemistry B, 2004, 108(39): 15043-15048. doi: 10.1021/jp0477093
    [28] LIU A M, HIDAJAT K, KAWI S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J]. Chemical Communications, 2000, 13: 1145-1146. doi: 10.1039/b002661l
    [29] NIU D, MA Z, LI Y S, et al. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. Journal of the American Chemical Society, 2010, 132(43): 15144-15147. doi: 10.1021/ja1070653
    [30] XIA X R, MONTEIRO-RIVIERE N A, MATHUR S, et al. Mapping the surface adsorption forces of nanomaterials in biological systems[J]. ACS Nano, 2011, 5(11): 9074-9081. doi: 10.1021/nn203303c
    [31] ANIRUDHAN T S, SHAINY F, CHRISTA J. Synthesis and characterization of polyacrylic acid-grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies[J]. Journal of Hazardous Materials, 2017, 324(Pt B): 117-130.
    [32] 桂洪杰, 周亮, 马嫱, 等. 不同吸附模型分析天然有机物的吸附特征[J]. 化学工程师, 2019, 33(5): 85-90.
    [33] CHEN B L, ZHU L Z, ZHU J X, et al. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds[J]. Environmental Science & Technology, 2005, 39(16): 6093-6100.
    [34] ALICANOGLU P, SPONZA D T. Removal of ciprofloxacin antibiotic with nano graphene oxide magnetite composite: Comparison of adsorption and photooxidation processes[J]. Desalination and Water Treatment, 2017, 63: 293-307. doi: 10.5004/dwt.2017.20176
    [35] LIU X Y, LIU M Y, ZHANG L. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere[J]. Journal of Hazardous Materials, 2018, 511: 135-144.
    [36] LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environment Science and Pollution Research, 2018, 25: 1136-1148.
    [37] MALIK R, GOYAL A, YADAV S, et al. Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations[J]. Journal of Hazardous Materials, 2019, 364: 621-634. doi: 10.1016/j.jhazmat.2018.10.058
    [38] LI H B, ZHANG D, HAN X Z, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics[J]. Chemosphere, 2014, 95: 150-155. doi: 10.1016/j.chemosphere.2013.08.053
    [39] GU C, KARTHIKEYAN K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(23): 9166-9173.
    [40] YAN W, HU S, JING C Y. Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid[J]. Journal of Colloid and Interface Science, 2012, 372(1): 141-147. doi: 10.1016/j.jcis.2012.01.016
    [41] YAN W, ZHANG J F, JING C Y. Adsorption of Enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study[J]. Journal of Colloid and Interface Science, 2013, 390(1): 196-203. doi: 10.1016/j.jcis.2012.09.039
    [42] ZHOU Q X, OUYANG S, AO Z, et al. Integrating biolayer interferometry, atomic force microscopy, and density functional theory calculation studies on the affinity between humic acid fractions and graphene oxide[J]. Environmental Science & Technology, 2019, 53(7): 3773-3781.
    [43] YAO N, LI C, YU J Y, et al. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water[J]. Separation and Purification Technology, 2019, 236: 116278.
    [44] TONG X, LI Y X, ZHANG F S, et al. Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process[J]. Environmental Pollution, 2019, 254: 112924. doi: 10.1016/j.envpol.2019.07.092
    [45] AÇIŞLI Ö, KARACA S, GÜRSES A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions[J]. Applied Clay Science, 2017, 142: 90-99. doi: 10.1016/j.clay.2016.12.009
    [46] YANG C, WU S C, CHENG J H, et al. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J]. Journal of Alloys and Compounds, 2016, 687: 804-812. doi: 10.1016/j.jallcom.2016.06.173
    [47] ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review[J]. Water Research, 2017, 126: 385-398. doi: 10.1016/j.watres.2017.08.010
    [48] PENG X M, HU F P, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study[J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 11.7 %DOWNLOAD: 11.7 %HTML全文: 69.1 %HTML全文: 69.1 %摘要: 19.2 %摘要: 19.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.7 %其他: 94.7 %XX: 3.6 %XX: 3.6 %天津: 0.2 %天津: 0.2 %榆林: 0.2 %榆林: 0.2 %武汉: 0.2 %武汉: 0.2 %深圳: 0.4 %深圳: 0.4 %苏州: 0.2 %苏州: 0.2 %荆州: 0.2 %荆州: 0.2 %葫芦岛: 0.2 %葫芦岛: 0.2 %衢州: 0.2 %衢州: 0.2 %其他XX天津榆林武汉深圳苏州荆州葫芦岛衢州Highcharts.com
图( 12) 表( 5)
计量
  • 文章访问数:  5891
  • HTML全文浏览数:  5891
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-05
  • 录用日期:  2020-03-28
  • 刊出日期:  2020-09-10
王琦, 胡碧波, 阳春, 李瑞, 张爽. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附[J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
引用本文: 王琦, 胡碧波, 阳春, 李瑞, 张爽. 烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附[J]. 环境工程学报, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
WANG Qi, HU Bibo, YANG Chun, LI Rui, ZHANG Shuang. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019
Citation: WANG Qi, HU Bibo, YANG Chun, LI Rui, ZHANG Shuang. Fabrication of alkyl-functionalized magnetic mesoporous silica and its adsorption of fluoroquinolone antibiotics[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2450-2462. doi: 10.12030/j.cjee.202001019

烷基功能化磁性介孔硅的制备及其对氟喹诺酮类抗生素的吸附

    通讯作者: 胡碧波(1975—),女,博士,副教授。研究方向:水污染控制理论与技术。E-mail:b.hu@cqu.edu.cn
    作者简介: 王琦(1994—),男,硕士研究生。研究方向:介孔硅材料的制备等。E-mail:1419841504@qq.com
  • 1. 重庆大学城市建设与环境工程学院,重庆 400045
  • 2. 重庆大学,三峡库区环境与生态部重点实验室,重庆 400045
基金项目:
重庆市社会事业与民生保障项目(cstc2015shmszx0632,cstc2015shms-ztzx0053)

摘要: 为了提高介孔硅材料对抗生素的吸附性能和简化材料合成步骤,在纯介孔硅(UMS)的基础上,使用“一锅法”合成了烷基改性介孔硅(FMS)和核壳磁性烷基改性介孔硅(MMS),并系统地研究了这3种吸附剂对恩诺沙星(ENR)、培氟沙星(PEF)和环丙沙星(CIP)3种氟喹诺酮类抗生素(FQs)的吸附性能。批次吸附实验结果表明,改性材料的吸附容量是未改性材料的5倍,且对氟喹诺酮类抗生素具有更高的吸附容量和吸附效率, 对CIP、PEF和ENR的最大吸附容量分别为201.52、275.46和286.35 mg·g−1,并且在10 min内可以达到90%以上的去除率。溶液的pH、腐殖酸浓度和离子强度对吸附过程的影响实验结果表明,MMS在pH为中性时可以达到最大吸附容量,且在高腐殖酸浓度下仍保持较高的吸附容量。回收再生实验结果表明,MMS具有良好的稳定性且吸附剂易于与溶液分离。进一步分析可知,静电作用和疏水作用是3种抗生素与MMS之间吸附的主要驱动力,使得MMS对抗生素具有优异的吸附性能。以上研究结果可为吸附去除污水中抗生素提供参考。

English Abstract

  • 抗生素是一类新兴污染物[1]。氟喹诺酮类抗生素(FQs)广泛用于人和动物的治疗[2-3],通过制药企业和污水处理厂排放进入水环境且以痕量浓度存在(ng·L−1~μg·L−1)[4-6],因其近年来在环境水体中被频繁检出而日益被关注。目前,FQs的去除主要采用各种物理化学方法,如高级氧化[7]、生物降解[8]、膜过滤[9]、吸附[10]等。与其他方法相比,吸附法具有成本低、操作简单、无有害副产物等优点,被认为是最有效的去除方法之一。FQs具有疏水性官能团、氢键受体和供体,在水中以离子形态存在,因此,疏水作用、氢键作用和静电相互作用是吸附去除FQs的主要机制。YAO等[10]利用污泥物化处理得到的衍生物质来吸附氟喹诺酮类抗生素,但是处理过后的生物质材料比表面积和孔容较小,导致吸附容量和吸附效率较低。多壁碳纳米管[11]、生物质炭[12]、树脂[13]、石墨烯[14]、MOFs[15]及其改性产物已被报道用于去除FQs,但因吸附容量有限、效率偏低、无选择性、吸附剂分离回收难等缺点限制了其广泛应用。研制解决上述缺点的高效吸附剂将是未来吸附技术发展的主要方向。

    有序介孔硅材料以其独特的孔道结构、均匀的孔径分布、高比表面积、化学惰性以及易修饰的孔道内表面等优点[16],在给水处理和废水处理中受到越来越多的关注。有序介孔硅材料的孔道内表面能提供大量的修饰位点,可以根据不同污染物的特性进行选择性修饰[17-18],并可以通过氢键作用、静电作用和亲疏水作用来去除水中各种有机污染物[19],因而被认为是一种很有前景的吸附剂。GAO等[20]合成了多种功能化介孔硅用于吸附环丙沙星,但无法实现从水中分离回收。CARTER等[1]和WANG等[3]合成了具有较高吸附能力的功能化磁性介孔硅,以去除水中的有机污染物,但合成材料的步骤却较为复杂。

    本研究采用“一锅法”成功地制备了功能化磁性介孔硅,并首次将其用于对FQs的吸附去除。利用傅里叶红外光谱(FT-IR)、X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、振动样品磁力计(VSM)、Zeta电位分析、N2吸附-脱附等温线等手段对功能化磁性介孔硅进行了分析表征,并通过分析吸附等温线、动力学参数,系统探讨了功能化磁性介孔硅去除ENR、PEF和CIP的吸附机理。该改性介孔硅材料可通过简便的方法合成,并易于通过磁铁进行分离,对FQs具有较高的吸附容量和吸附效率,该研究为吸附去除污水中抗生素提供了参考。

  • 二十二烷基三甲基氯化铵(C25H54ClN,99%)购自上海市源叶生物科技有限公司;六水合氯化铁(FeCl3· 6H2O,分析纯)、四水合氯化亚铁(FeCl2· 4H2O,分析纯)、硝酸铵(NH4NO3,分析纯)、氢氧化钠(NaOH,分析纯)和无水乙醇(C2H5OH,分析纯)、腐殖酸(HA,分析纯)均由重庆市川东化工有限公司提供。去离子水(18.25 Ω·cm−1)为实验室自制。正硅酸乙酯(TEOS,99%)、十二烷基三乙氧基硅烷(C18H40O3Si, 95%)、恩诺沙星(ENR,98%)、培氟沙星(PEF,99%)和环丙沙星(CIP,98%)均购自上海市阿拉丁生化科技股份有限公司。3种抗生素的理化性质如表1所示。

  • 烷基功能化磁性介孔硅复合材料采用改进的“一锅法”[21-22]制备。首先,将0.25 g二十二烷基三甲基氯化铵和0.1 g NaOH加入含有蒸馏水和无水乙醇(200 mL, 体积比为1∶3)的混合溶液中,在85 °C下搅拌30 min,同时通入氮气以排除溶液中的氧气。随后,滴加5.0 mL FeCl3·6H2O和FeCl2·4H2O的混合溶液,在85 °C下剧烈搅拌30 min。待反应溶液温度降低至60 °C时,加入60 mL无水乙醇,以得到合适的溶胶-凝胶反应体系[23]。获得的反应体系用超声处理20 min,并加入0.6 mL TEOS和0.6 mL十二烷基三乙氧基硅烷,继续搅拌30 min后,将反应混合物冷却至室温。用磁铁分离出沉淀物,并将其加入NH4NO3和乙醇(95%)混合液中,在60 °C下,搅拌30 min以脱除模板剂,过滤收集固体。将所收集的固体材料用去离子水和乙醇冲洗至中性,并在60 °C的真空环境中干燥6 h,得到0.32 g烷基改性磁性介孔硅MMS灰色固体,2步总收率为55.4%。

  • 采用SEM(FEG-SEM JSM-7200F)和TEM(FEI Teanci G2 F20)表征和分析MMS复合材料的微观结构和表面形态;采用FT-IR(FT-IR, NICOLET 380)检测材料的红外光谱;使用微观表面积和孔隙率分析仪(Micromeritics ASAP 2020)测量材料的氮气吸附等温线,并计算孔体积、BJH孔径和BET比表面积;磁滞回线由VSM(Lake Shore,VSM 7307)测定;使用Malvern Zeta分析仪(Nano-ZS 90)检测MMS的Zeta电位。

  • ENR、PEF和CIP标准品溶于滴加有盐酸的去离子水中以制备各自的储备溶液,并用去离子水稀释获得其工作溶液。为了研究UMS、FMS和MMS 3种不同的吸附材料对上述3种FQs的吸附特性,取1.5 mg吸附剂添加到聚四氟乙烯小瓶中(V=50 mL),加入30.0 mL初始浓度为10 mg·L−1的工作溶液,将溶液pH调整为7.0。在25 °C条件下,放入摇床振荡,振荡速度为180 r·min−1。在样品进入液相色谱分析仪之前,用0.45 μm的聚醚砜滤膜(PES)过滤。

    选用上述实验中吸附性能最佳的吸附剂对ENR、PEF和CIP进行吸附动力学实验。实验溶液初始浓度设置为10 mg·L−1,温度为25 °C,并分别保持不同的接触时间(0~90 min)。对于吸附等温线,分别配制不同浓度的ENR (0~100 mg· L−1)、PEF (0~100 mg·L−1)和CIP (0~100 mg· L−1)溶液。利用HCl/NaOH调节溶液至最佳pH (对于ENR和PEF, pH为6.0;对于CIP,pH为7.0),并将实验温度控制在25 °C。为了研究腐殖酸浓度、离子强度和pH对吸附的影响,将不同浓度的腐殖酸(0~30 mg·L−1)和NaCl (0~0.1 mol·L−1)添加到抗生素溶液中,将pH从3.0调节至11.0。上述所有实验均重复3次。空白对照样中的抗生素初始浓度在实验后基本无变化,表明抗生素溶液浓度在吸附过程中不受外界条件的影响。

  • 通过FT-IR光谱表征了3种吸附剂的表面官能团组成(图1)。位于587 cm−1处的吸收峰为Fe—O—Fe的振动吸收峰。对于3种吸附剂来说,3 418~3 480、1 084、1 631和801 cm−1处的吸收峰分别是由O—H、Si—O—Si和Si—OH的伸缩振动引起的[24-25]。对于MMS和FMS来说,在2 925 cm−1和2 859 cm−1处出现的新吸附峰是由—CH2的不对称伸缩振动和对称伸缩振动引起的,而1 487 cm−1处的吸收峰是由—CH3的弯曲振动所引起的[26]。然而,在UMS的吸收峰中,所有—CH2和—CH3的伸缩振动峰都不存在,这表明十二烷基已成功负载到MMS和FMS上。

    3种吸附剂的N2吸附-脱附等温线(图2)均为IV型曲线,表明3种材料均为介孔材料[27]。孔径分布(图2内嵌图)表明,合成材料的孔径约为2.5 nm,并且存在狭窄的孔径分布。与UMS和FMS相比,MMS的尖峰更加清晰,这表明在相同的孔容条件下,MMS具有更多的孔道。此外,BET分析(表2)显示,MMS的孔道总体积和比表面积分别为1.30 cm3·g−1和1 104.71 m2·g−1,均高于FMS (0.94 cm3·g−1和462.21 m2·g−1),这与已报道的介孔材料特性[28]一致。

    图3为MMS的TEM图和SEM图。MMS的TEM(图3)显示出典型的核-壳结构,可以看到MMS直径约200 nm的磁核和厚度约50 nm的灰色介孔硅外壳。外壳中的孔道垂直于磁核的表面,并在高放大倍率下表现出较高的介观有序性,这与先前的报道[29]一致。

    为了研究MMS的磁性能,检测了MMS和Fe3O4的VSM曲线(图4)。结果表明,由于剩磁和矫顽磁接近零,因此,MMS具有超顺磁特性。而MMS的最大磁感应强度从5.6×10−3 T降至2.9×10−3 T,这是由于包裹了较厚的介孔二氧化硅外壳和引入了有机官能团所导致[25]。同时,磁滞回线结果表明,MMS的饱和磁化强度足以使其被磁铁从水中分离出来。此外,由于其优异的超顺磁性能,MMS能够很好地分散在水中并易于污染物的吸附。

    图5所示,在小角度XRD图谱中,UMS具有3个明显的峰(110)、(200)和(210),表现出介孔材料的典型衍射图谱,并且特征峰明显向低衍射角偏移。这表明UMS的晶胞比典型介孔材料MCM-41的要大,这可能是由于使用较长的烷基链作为模板所致[24]。这些图谱揭示了3种材料均具有短程介观有序的特征[30]。此外,由于引入了有机官能团和Fe3O4,3个衍射峰的强度均降低且向更大的角度偏移。在MMS和Fe3O4的广角XRD图谱中(图5内嵌图),2θ在30.2°、35.5°、43.2°、53.9°、57.2°和63.1°对应的衍射峰值分别对应(220)、(311)、(400)、(422)、(511)、(440)和(533)晶面。这与Fe3O4指数(JCPDS 19-0629)[21]一致。但是,由于有机功能化介孔硅的屏蔽作用,导致相应衍射峰的强度有所降低。

  • 为了探讨吸附容量随接触反应时间的变化,研究了ENR、PEF和CIP在MMS上的吸附动力学。如图6所示,由于MMS的高比表面积和负载的有机官能团,使得吸附能够很快达到平衡。由于负载的官能团可以特异性地与目标污染物分子结合,所以大多数污染物能够在10 min内被吸附完并在20 min内达到吸附平衡。因此,将接触时间设置为90 min,以确保在以下实验中所有吸附都能达到平衡。使用伪一级和伪二级动力学模型来进行吸附数据的拟合,结果(表3)显示,伪二级模型(R2 = 0.993~0.998)具有比伪一级模型(R2 = 0.953~0.976)更高的相关系数。有研究[31]使用聚丙烯酸负载的羧基石墨烯来吸附ENR,并报道了伪二级动力学模型的拟合结果。在相似的实验条件下,qe(4.01 mg·g−1)和k1(0.003 5 mg·(g·min)−1)的拟合值均低于MMS(表3),这表明MMS在吸附容量和吸附效率均优于氧化石墨烯。另外,当吸附平衡时,ENR、PEF和CIP的吸饱和附容量分别为149.21、140.75和99.70 mg·g−1,这与实验检测值相近。此结果表明,ENR、PEF和CIP在MMS上的吸附应是物理吸附。

  • Langmuir模型用于描述在均匀表面上发生的单层吸附且被吸附分子之间无相互作用,而Freundlich模型用于描述在不均匀表面上发生的多层吸附[32]。这2种模型都被用于本研究中实验数据的拟合,以分析FQs在MMS上的吸附特性。FQs在MMS上的吸附等温线如图7所示,吸附热力学参数如表4所示。通过R2的对比可以发现,Langmuir模型能够更好地拟合实验数据。这表明FQs在MMS上的吸附是单层吸附且吸附剂表面上吸附位点分布均匀。通过Langmuir模型得出ENR、PEF和CIP在MMS上的最大吸附容量分别为286.35、275.46和201.52 mg·g−1。此外,与CIP相比,MMS对ENR和PEF的吸附容量分别增加了42.3%和36.8%。MMS对3种抗生素的吸附能力顺序为ENR> PEF> CIP。导致这种吸附效果差异的原因在于,十二烷基改性增强了MMS的孔道内表面疏水性,进而获得了对有机物产生更强的吸附亲和力[33]。ENR、PEF和CIP的辛醇水分配系数分别为0.54、0.27和−0.86(https://chemicalize.com),在疏水分配的作用下[33],MMS能够对3种抗生素产生不同的吸附效果。此外,MMS对FQs的吸附能力优于FMS和UMS。与其他报道的吸附剂(表5)性能相比,MMS对FQs表现出更大的吸附能力,因此,其在去除抗生素方面具有良好的应用前景。

  • 溶液的pH可以通过改变FQs分子的电离形态和溶液中MMS的表面电荷分布,进而对吸附过程产生影响[38-39]。为了研究溶液初始pH对MMS吸附的影响,将溶液pH从3.0调节至11.0,并进行了批次实验。结果表明,pH对3种FQs的影响规律相似(图8)。在pH为6.0和7.0附近,ENR/PEF和CIP能够分别达到最大吸附容量。此外,可以通过离子形态分布(图8)和Zeta电势(图9)进一步分析pH对吸附的影响。

    图9所示,当pH在3.0~7.0时,CIP的吸附容量逐渐升高;当pH在7.0~11.0时,其吸附容量逐渐降低。这是由于在酸性条件下,羧基能够去质子化;而在碱性条件下,哌嗪环能够质子化。因此,CIP分子以中性分子(CIP0)、阳离子(CIP +)、阴离子(CIP)和两性离子(CIP±)的形态存在[38-40]。由图9还可知,在pH<7.0时,MMS的表面电荷由正价态转变为负价态(虚线为电荷由正变为负的分界线)。此外,在酸性条件下,CIP+和CIP±是CIP最主要的存在形态(图8(c))。因此,CIP吸附容量的增长可归因于CIP±和MMS表面正/负电荷间的静电吸引作用。但是,在7.0<pH<11.0时,CIP和CIP±是CIP主要的存在形态(图8(c)),因此,CIP吸附容量的减少可能是由于CIP与MMS表面负电荷之间的静电排斥所引起的。

    对于ENR,当pH在3.0~6.0时,吸附容量逐渐增加;当pH在6.0~11.0时,吸附容量逐渐降低(图9)。同理,由于羧基和哌嗪环的质子化和去质子化,ENR分子以中性分子(ENR0)、阳离子(ENR+)、阴离子(ENR)和两性离子(ENR±)的形态存在[41-42]。此外,当pH<6.0时,ENR和ENR±是ENR的主要存在形态(图8(a))。因此,由于ENR±和MMS表面正/负电荷间的静电作用,使得ENR的吸附容量增加。但是,当6.0<pH<11.0时,ENR和ENR±是ENR主要的存在形态。因此,ENR和MMS表面负电荷之间的静电排斥导致了ENR吸附容量的减少。

  • 腐殖酸普遍存在于水体中,对有机污染物的吸附有很大影响。为了研究腐殖酸对MMS吸附FQs的影响,通过改变腐殖酸的初始浓度(5~30 mg·L−1),并在pH 7.0的条件下进行了批次实验,结果如图10所示。MMS对FQs的吸附能力随着腐殖酸浓度的增加而逐渐降低。这种现象是由于腐殖酸和FQs通过疏水性分配作用来竞争MMS上的疏水吸附位点引起的[43-46],故导致FQs去除率略有下降。此外,与ENR和PEF相比,CIP在吸附过程中受到腐殖酸的影响最小,这主要是由于CIP的疏水性最弱。疏水性的腐殖酸对FQs的吸附有负面影响,但是MMS在高浓度的腐殖酸情况下,对FQs仍具有较高的吸附能力,这表明MMS在吸附去除FQs时受腐殖酸影响较小。

  • 大多数废水中均含有一定量的盐离子,因此,盐离子的存在会影响吸附过程[47]。为了更好地研究离子强度对FQs吸附的影响,在溶液中加入NaCl(0~0.1 mol·L−1)并进行了一系列批次实验。如图11所示,在离子强度由0增加到0.1 mol· L−1的过程中,FQs的吸附容量逐渐随之增加,这种现象可以用盐析效应和静电屏蔽效应来解释[47-48]。首先,在溶液中加入NaCl会降低FQs的溶解度,这可以促进更多FQs分子向MMS表面扩散,从而有利于吸附。另外,静电屏蔽效应可能是吸附的另一个因素。由于离子强度的增加,静电排斥力受到了屏蔽,从而提高了吸附能力。因此,MMS不会受到溶液中盐离子的不利影响。

  • 使用0.1 mol·L−1 的NaOH溶液作为ENR、PEF和CIP的洗脱液,进行了5个吸附/解吸循环,用以研究MMS的稳定性和重复利用,结果如图12所示。经过5个吸附/解吸循环后,ENR、PEF和CIP的吸附容量随再生循环次数的增加而略有下降。但经过循环后,MMS对FQs仍保持了至少75%的去除率,这表明MMS在吸附/解吸过程中具有良好的稳定性。

  • 1)相比于UMS和FMS, MMS对3种抗生素的吸附效果最好。对ENR、PEF和CIP的最大吸附容量分别为286.35、275.46和201.52 mg·g−1,且在10 min内可对3种抗生素均可达到90%以上的去除率。

    2)经过伪二级动力学方程拟合的qe值为99.70、140.75和149.21 mg·g−1,与实验所得值100.42、138.54和145.75 mg·g−1相近,且R2>0.99,这表明伪二级动力学方程能够较好地描述MMS对3种抗生素的吸附行为。

    3)用Langmuir吸附模型与Freundlich吸附模型对结果进行拟合表明,Langmuir吸附模型拟合的R2大于Freundlich吸附模型。因此,Langmuir吸附模型能够更好地描述MMS对3种抗生素的等温吸附特性。

    4) MMS对ENR、PEF和CIP的最佳吸附pH约为6.0和7.0,这有利于吸附剂在实际水体中的应用;腐殖酸对吸附产生的影响较小,且溶液中存在的盐离子在一定程度上能够有利于FQs的吸附。

    5) MMS吸附3种氟喹诺酮类抗生素的主要作用力包括静电吸引和疏水作用。同时,再生循环实验结果表明,MMS对FQs的吸附具有很好的稳定性。

参考文献 (48)

返回顶部

目录

/

返回文章
返回