[1] CARTER D L, DOCHERTY K M, GILL S A, et al. Antibiotic resistant bacteria are widespread in songbirds across rural and urban environments[J]. Science of the Total Environment, 2018, 627: 1234-1241. doi: 10.1016/j.scitotenv.2018.01.343
[2] HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar[J]. Science of the Total Environment, 2018, 616-617: 1384-1391. doi: 10.1016/j.scitotenv.2017.10.177
[3] WANG L, QIANG Z M, LI Y G, et al. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 2017, 56: 263-271. doi: 10.1016/j.jes.2016.10.006
[4] 张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662. doi: 10.3969/j.issn.1671-0460.2019.11.054
[5] 廖全山. 我国抗生素滥用现状、原因及对策综述[J]. 世界最新医学信息文摘, 2016, 57(16): 41-42.
[6] BU Q W, WANG B, HUANG J, et al. Pharmaceuticals and personal care products in the aquatic environment in China: A review[J]. Journal of Hazardous Materials, 2013, 262: 189-211. doi: 10.1016/j.jhazmat.2013.08.040
[7] 张海璇, 刘娟, 欧桦瑟. 紫外-过硫酸盐降解水中环丙沙星动力学和效果[J]. 水处理技术, 2017, 43(5): 43-47.
[8] 刘欣然, 李明雪, 张博, 等. 纤维素复合膜吸附处理盐酸环丙沙星[J]. 现代化工, 2019, 39(6): 166-171.
[9] AHMED M J, THEYDAN S K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 219-226. doi: 10.1016/j.jtice.2013.05.014
[10] YAO H, LU J, WU J, et al. Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: Role of the sludge source[J]. Water, Air & Soil Pollution, 2013, 224(1): 1370-1378.
[11] YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. doi: 10.1016/j.chemosphere.2016.03.083
[12] 王吻, 马秀兰, 顾芳宁, 等. 生物质炭及草炭吸附模拟废水中恩诺沙星特性的研究[J]. 中国抗生素杂志, 2019, 44(7): 880-886. doi: 10.3969/j.issn.1001-8689.2019.07.019
[13] WANG W, CHENG J D, JIN J, et al. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins[J]. Scientific Reports, 2016, 6(1): 30331. doi: 10.1038/srep30331
[14] TANG Y L, GUO H G, XIAO L, et al. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 424: 74-80.
[15] WU G G, MA J P, LI J H, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions[J]. Journal of Colloid and Interface Science, 2018, 528: 360-371. doi: 10.1016/j.jcis.2018.05.105
[16] GIBSON L T. Mesosilica materials and organic pollutant adsorption: Part B. Removal from aqueous solution[J]. Chemical Society Reviews, 2014, 43(15): 5173-5182. doi: 10.1039/C3CS60095E
[17] DIAGBOYA P N, OLU-OWOLABI B I, ADEBOWALE K O. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: Batch and modeling studies[J]. Journal of Environmental Management, 2014, 146: 42-49.
[18] KIM Y, LEE B, CHOO K, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 184-190.
[19] WALCARIUS A, MERCIER L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants[J]. Journal of Materials Chemistry, 2010, 20(22): 4478-4511. doi: 10.1039/b924316j
[20] GAO J S, ZHANG X Y, XU S T, et al. Clickable SBA-15 to screen functional groups for adsorption of antibiotics[J]. Chemistry, 2014, 9(3): 908-914.
[21] LI Z B, HUANG D N, FU C, et al. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples[J]. Journal of Chromatography A, 2011, 1218(37): 6232-6239. doi: 10.1016/j.chroma.2011.06.109
[22] KONG A, WANG P, ZHANG H Q, et al. One-pot fabrication of magnetically recoverable acid nanocatalyst, heteropolyacids/chitosan/Fe3O4, and its catalytic performance[J]. Applied Catalysis A: General, 2012, 417-418: 183-189. doi: 10.1016/j.apcata.2011.12.040
[23] CIRIMINNA R, SCIORTINO M, Alonzo G, et al. From molecules to systems: Sol-gel microencapsulation in silica-based materials[J]. Chemical Reviews, 2011, 111(2): 765-789. doi: 10.1021/cr100161x
[24] BOUKOUSSA B, ZEGHADA S, ABABSA G B, et al. Catalytic behavior of surfactant-containing-MCM-41 mesoporous materials for cycloaddition of 4-nitrophenyl azide[J]. Applied Catalysis A: General, 2015, 489: 131-139. doi: 10.1016/j.apcata.2014.10.022
[25] ZHANG X L, ZENG T, WANG S H, et al. One-pot synthesis of C18-functionalized core-shell magnetic mesoporous silica composite as efficient sorbent for organic dye[J]. Journal of Colloid and Interface Science, 2015, 448: 189-196. doi: 10.1016/j.jcis.2015.02.029
[26] ZHU L F, ZHU R L. Surface structure of CTMA+ modified bentonite and their sorptive characteristics towards organic compounds[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1/2/3): 19-24.
[27] HAN S H, XU J, HOU W G, et al. Synthesis of high-quality MCM-48 mesoporous silica using gemini surfactant dimethylene-1, 2-bis (dodecyl dimethylammonium bromide)[J]. The Journal of Physical Chemistry B, 2004, 108(39): 15043-15048. doi: 10.1021/jp0477093
[28] LIU A M, HIDAJAT K, KAWI S, et al. A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J]. Chemical Communications, 2000, 13: 1145-1146. doi: 10.1039/b002661l
[29] NIU D, MA Z, LI Y S, et al. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness[J]. Journal of the American Chemical Society, 2010, 132(43): 15144-15147. doi: 10.1021/ja1070653
[30] XIA X R, MONTEIRO-RIVIERE N A, MATHUR S, et al. Mapping the surface adsorption forces of nanomaterials in biological systems[J]. ACS Nano, 2011, 5(11): 9074-9081. doi: 10.1021/nn203303c
[31] ANIRUDHAN T S, SHAINY F, CHRISTA J. Synthesis and characterization of polyacrylic acid-grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies[J]. Journal of Hazardous Materials, 2017, 324(Pt B): 117-130.
[32] 桂洪杰, 周亮, 马嫱, 等. 不同吸附模型分析天然有机物的吸附特征[J]. 化学工程师, 2019, 33(5): 85-90.
[33] CHEN B L, ZHU L Z, ZHU J X, et al. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds[J]. Environmental Science & Technology, 2005, 39(16): 6093-6100.
[34] ALICANOGLU P, SPONZA D T. Removal of ciprofloxacin antibiotic with nano graphene oxide magnetite composite: Comparison of adsorption and photooxidation processes[J]. Desalination and Water Treatment, 2017, 63: 293-307. doi: 10.5004/dwt.2017.20176
[35] LIU X Y, LIU M Y, ZHANG L. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere[J]. Journal of Hazardous Materials, 2018, 511: 135-144.
[36] LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environment Science and Pollution Research, 2018, 25: 1136-1148.
[37] MALIK R, GOYAL A, YADAV S, et al. Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations[J]. Journal of Hazardous Materials, 2019, 364: 621-634. doi: 10.1016/j.jhazmat.2018.10.058
[38] LI H B, ZHANG D, HAN X Z, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics[J]. Chemosphere, 2014, 95: 150-155. doi: 10.1016/j.chemosphere.2013.08.053
[39] GU C, KARTHIKEYAN K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(23): 9166-9173.
[40] YAN W, HU S, JING C Y. Enrofloxacin sorption on smectite clays: Effects of pH, cations, and humic acid[J]. Journal of Colloid and Interface Science, 2012, 372(1): 141-147. doi: 10.1016/j.jcis.2012.01.016
[41] YAN W, ZHANG J F, JING C Y. Adsorption of Enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study[J]. Journal of Colloid and Interface Science, 2013, 390(1): 196-203. doi: 10.1016/j.jcis.2012.09.039
[42] ZHOU Q X, OUYANG S, AO Z, et al. Integrating biolayer interferometry, atomic force microscopy, and density functional theory calculation studies on the affinity between humic acid fractions and graphene oxide[J]. Environmental Science & Technology, 2019, 53(7): 3773-3781.
[43] YAO N, LI C, YU J Y, et al. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water[J]. Separation and Purification Technology, 2019, 236: 116278.
[44] TONG X, LI Y X, ZHANG F S, et al. Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process[J]. Environmental Pollution, 2019, 254: 112924. doi: 10.1016/j.envpol.2019.07.092
[45] AÇIŞLI Ö, KARACA S, GÜRSES A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions[J]. Applied Clay Science, 2017, 142: 90-99. doi: 10.1016/j.clay.2016.12.009
[46] YANG C, WU S C, CHENG J H, et al. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution[J]. Journal of Alloys and Compounds, 2016, 687: 804-812. doi: 10.1016/j.jallcom.2016.06.173
[47] ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review[J]. Water Research, 2017, 126: 385-398. doi: 10.1016/j.watres.2017.08.010
[48] PENG X M, HU F P, ZHANG T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study[J]. Bioresource Technology, 2018, 249: 924-934. doi: 10.1016/j.biortech.2017.10.095