-
土霉素(oxytetracycline, OTC)是常见的四环素类抗生素,广泛用作抗菌剂。土霉素进入生物体后,约50%~80%无法被吸收,被排出体外。一般而言,抗生素释放到水环境中后,一方面不易被清除,另一方面容易诱变耐药基因,由此造成相关环境风险[1],因此,废水中土霉素的去除研究十分必要。
吸附法广泛用于难降解污染物(如重金属离子、抗生素类、氯代酚类、染料等)的去除。活性炭(AC)具有孔隙多、比表面积大的表面特征,在废水处理领域中主要用于处理重金属、染料、有机物以及净化饮用水等方面[2-3]。但AC价格高,粉末状的AC从溶液中分离回收困难,在吸附过程中常常有质量损失。
磁性材料具有特殊性,可以在外磁场的存在下将固体材料从溶液中分离出来,近10年来受到重视。但直接用磁性材料如Fe3O4作吸附剂,吸附能力差。将活性炭赋予磁性,在保证其基本吸附性能的基础上,能够实现简单分离,解决了AC在使用过程中固液分离困难以及不易回收的问题,在废水处理中的应用范围更加广泛[4-6]。本课题组采用共沉淀法制备了磁性活性炭(MAC),在表征的基础上,研究了其对阳离子染料、氯代酚和硝基酚的吸附性能,发现MAC有较大的吸附量,且可以再生使用,同时具有好的固水分离性能[7-8]。本研究利用盐酸土霉素(OTC-HCl)作为目标物,探讨MAC对OTC-HCl的吸附和解吸特征,并用吸附模型对实验结果进行了拟合,所得结果为其进一步工程化应用提供参考。
磁性活性炭对废水中盐酸土霉素的吸附
Adsorption of oxytetracycline hydrochloride in wastewater by magnetic activated carbon in batch mode
-
摘要: 利用磁性材料易分离和活性炭具有良好的吸附性能的特点,制备了磁性活性炭(MAC),研究了其对废水中盐酸土霉素(OTC-HCl)的吸附性能。应用批处理方式,研究了影响MAC吸附性能的因素,并对吸附动力学和等温线进行了分析。酸性条件有利于OTC-HCl的吸附,共存盐的影响小,升温有利于OTC-HCl的吸附。303 K时对OTC-HCl的吸附量达到338 mg·g−1。模型拟合分析表明,Elovich方程可准确地预测时间对吸附量的影响,Toth和Langmui模型可以描述吸附平衡过程。Elovich方程可以预测解吸时间对解吸量的影响,吸附OTC-HCl的MAC有一定的重复使用性能。以上结果表明,MAC具有良好的吸附能力,可用于废水中土霉素的吸附去除。Abstract: Based on the easy separation of magnetic materials and good adsorption performance of activated carbon, a type of magnetic activated carbon (MAC) was prepared by co-precipitation and its adsorption property toward oxytetracycline hydrochloride (OTC-HCl) was studied. The batch experiments were conducted to study the impact factors of MAC adsorption ability and analyze the adsorption kinetics and isotherms. The results showed that both acidic conditions and the increase of temperature were in favor of OTC-HCl adsorption, while existence of common salt had slight influence. Adsorption amount reached 338 mg·g−1 at 303 K. The adsorption equilibrium could be fitted by Langmuir model and Toth model, and Elovich equation could accurately predict the effect of time on adsorption amount and the effect of desorption time on the desorption amount. Furthermore, OTC-HCl-loaded MAC could be regenerated and reused to some extent. MAC is promising to be applied in wastewater treatment due to its good adsorption ability.
-
Key words:
- adsorption /
- magnetic activated carbon /
- oxytetracycline hydrochloride /
- model analysis
-
表 1 吸附动力学模型和吸附等温线模型
Table 1. Expression of selected kinetic models and isotherm models
模型名称 方程式 符号说明 准二级动力学模型 ${q_t} = \dfrac{{{k_2}q_{\rm{e}}^2t}}{{1 + {k_2}{q_{\rm{e}}}t}}$ k2为准二级速率常数 Elovich方程 ${q_t} = A + B\ln t$ A和B为常数 双常数方程 lnqt = lnA+Kslnt A为常数,Ks为吸附速率系数 Langmuir模型 ${q_{\rm{e}}} = \dfrac{{{q_{\rm{m}}}{K_{\rm{L}}}{{\rm{C}}_{\rm{e}}}}}{{1 + {K_{\rm{L}}}{{\rm{C}}_{\rm{e}}}}}$ qm为单分子层理论饱和吸附量;
KL为与结合能有关的常数Temkin模型 ${q_{\rm{e}}} = A + B{\rm{ln}}{{\rm{C}}_{\rm{e}}}$ A和B为方程参数 Koble-Corrigan模型 ${q_{\rm{e}}} = \dfrac{{A{C_{\rm{e}}}^n}}{{1 + B{C_{\rm{e}}}^n}}$ A和B为方程参数 Toth模型 ${q_{\rm{e}}} = \dfrac{{{q_{\rm{m}}}{C_{\rm{e}}}}}{{{{\left[ {1 + {{\left( {{b_{\rm{T}}}{C_{}}} \right)}^{1/{n_{\rm{T}}}}}} \right]}^{{n_{\rm{T}}}}}}}$ qm为最大吸附量;bT为Langmuir
平衡常数;nT为参数表 2 MAC对OTC-HCl的动力学模型拟合结果
Table 2. Fitted results of OTC-HCl adsorption onto MAC with kinetic models
模型 T/K qe(theo)/(mg·g−1) k2/(g·(mg·min)−1) R2 误差E 准二级动力学模型 293 248±6 (4.43±0.92)×10−4 0.893 2.64×103 303 282±8 (2.27±0.44)×10−4 0.933 2.88×103 313 296±10 (3.61±0.93)×10−4 0.839 5.87×103 方程 T/K A B R2 误差E Elovich方程 293 66.6±3.6 30.6±0.7 0.994 152 303 35.7±5.6 40.4±1.1 0.991 365 313 76.2±4.6 37.3±0.9 0.993 242 方程 T/K A Ks R2 误差E 双常数方程 293 99.7±5.1 0.153±0.009 0.970 740 303 89.2±7.2 0.189±0.015 0.955 1.91×103 313 116±5 0.159±0.007 0.983 613 注:qe(exp)分别为263、291、318 mg·g−1。 表 3 MAC吸附OTC-HCl的吸附等温线拟合结果
Table 3. Fitted results of OTC-HCl adsorption onto MAC with isotherm models
模型 T/K qe(exp)/(mg·g−1) KL/(L·mg−1) qm(theo)/(mg·g−1) R2 误差E Langmuir 293 315 0.239±0.051 294±11 0.935 3.03×103 303 338 0.118±0.025 335±9 0.976 1.46×103 313 402 0.262±0.077 396±27 0.872 1.18×104 模型 T/K qe(exp)/(mg·g−1) A B R2 误差E Temkin 293 315 80.7±17.6 40.7±4.3 0.925 3.49×103 303 338 76.2±18.6 50.3±4.9 0.936 3.92×103 313 402 108±31 60.3±9.8 0.841 1.47×104 模型 T/K A B n R2 误差E Koble-Corrigan 293 86.3±33.4 0.281±0.096 0.791±0.299 0.925 2.94×103 303 69.7±17.5 0.204±0.047 0.918±0.164 0.973 1.40×103 313 111±56 0.275±0.123 0.925±0.461 0.847 1.18×104 模型 T/K qm(theo)/(mg·g−1) bT nT R2 误差E Toth 293 317±40 0..419±0.424 1.52±0.78 0.929 2.79×103 303 345±19 0.225±0.082 1.18±0.30 0.974 1.35×103 313 406±64 0.304±0.272 1.15±0.82 0.848 1.17×104 -
[1] ZHENG S L, QIU X Y, CHEN B, et al. Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance[J]. Chemosphere, 2011, 84(11): 1677-1685. doi: 10.1016/j.chemosphere.2011.04.076 [2] BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219(1): 499-511. [3] 吴维, 赵新华, 刘旭. 粉末活性炭处理抗生素污染原水试验研究[J]. 给水排水, 2012, 38(5): 133-136. [4] 罗珍贞, 王星敏, 汤敏, 等. 原位掺铁制备磁性活性炭吸附处理苯胺[J]. 环境工程学报, 2016, 10(9): 5203-5209. doi: 10.12030/j.cjee.201509026 [5] OLIVEIRA L C A, RIOS R, FABRIS J D, et al. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water[J]. Carbon, 2002, 40(12): 2177-2183. doi: 10.1016/S0008-6223(02)00076-3 [6] 韩润平, 房丽燕, 李小钰, 等. 聚乙烯亚胺负载四氧化三铁对刚果红吸附研究[J]. 郑州大学学报(工学版), 2019, 40(2): 59-65. [7] RONG Y C, HAN R P. Adsorption of p-chlorophenol and p-nitrophenol in single and binary systems from solution using magnetic activated carbon[J]. Korean Journal of Chemical Engineering, 2019, 36(6): 942-953. doi: 10.1007/s11814-019-0267-1 [8] RONG Y C, LI H, XIAO L H, et al. Adsorption of malachite green dye from solution by magnetic activated carbon in batch mode[J]. Desalination and Water Treatment, 2018, 106: 273-284. doi: 10.5004/dwt.2018.22072 [9] KULSHRESTHA P, GIESE R F, AGA D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil[J]. Environmental Science & Technology, 2004, 38(15): 4097-4105. [10] LIAN L L, LV J Y, LOU D W. Synthesis of novel magnetic microspheres with Bi-metal oxide shell for excellent adsorption of oxytetracycline[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10298-10306. [11] DOGAN M, OZDEMIR Y, ALKAN M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite[J]. Dyes and Pigments, 2007, 75(3): 701-713. doi: 10.1016/j.dyepig.2006.07.023 [12] SONG J Y, ZOU W H, BIAN Y Y, et al. Adsorption characteristics of methylene blue by peanut husk in batch and column mode[J]. Desalination, 2011, 265(1/2/3): 119-125. [13] ZHANG R D, ZHANG J H, ZHANG X N, et al. Adsorption of congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2578-2583. doi: 10.1016/j.jtice.2014.06.009 [14] HU Y Y, HAN R P. Selective and efficient removal of anionic dyes from solution by zirconium (IV) hydroxide coated magnetic materials[J]. Journal of Chemical & Engineering Data, 2019, 64(2): 791-799. [15] REN X F, ZHANG R D, LU W Z, et al. Adsorption potential of 2,4-dichlorophenol onto cationic surfactant-modified Phoenix tree leaf in batch mode[J]. Desalination and Water Treatment, 2016, 57(14): 6333-6346. doi: 10.1080/19443994.2015.1008579