-
铜绿微囊藻是产生藻华的主要藻种之一,高藻水会给自来水厂水质处理带来困难,藻细胞在新陈代谢过程中会释放有机物至水体中,其中包括嗅味物质,并在消毒工艺过程中产生消毒副产物[1-2]。目前,常用的除藻方法有生物去除法、化学去除法和物理去除法3种[3]。物理法包括超滤膜法、气浮法和活性炭吸附法。超滤膜法对水中藻细胞和胞外聚合物(extracellular organic matters,EOM)有良好的去除效果,但是藻及藻源有机物极易堵塞膜孔,造成严重的膜污染。气浮法只适合高藻低浊度的水处理,同时水厂须新建的构筑物及新增加的水泵增大了能耗,使水厂处理成本增加。生物法处理采用能溶解藻的细菌破坏藻细胞壁,但藻破裂死亡后会将细胞内有机物的释放,消耗水体中溶解氧,增加水体中总有机碳的浓度,破坏水生生物的生态平衡[4]。
与上述技术相比,化学法特别是混凝沉淀法依旧是最好的除藻方法之一,铝系混凝剂因其经济高效成为目前水厂使用最广泛的混凝剂。CHRISTOPHER等[5]通过研究发现,混凝前后钾离子浓度没有明显变化,证明铝系混凝剂没有杀死藻细胞,没有破坏藻细胞细胞壁结构。通过Ferron逐级络合比色法可将铝系絮凝剂的形态分成3种:单体形态Ala、中等聚和形态Alb、胶体及固体形态Alc[6]。YAN等[7]认为这3种形态去除有机物(nature organic matter, NOM)的机理分别为络合、电中和、吸附。分子式为[AlO4Al12(OH)24(H2O)12]7+的Al13带有很高的正电荷及很强的架桥能力,是Alb的主要活性成分。WANG等[8]和ISHIFUJI等[9]发现,低浓度的EOM能促进混凝,高浓度的EOM却抑制混凝过程。虽然很多学者研究了不同混凝剂对藻细胞的去除效果,但是混凝除藻过程中胞外聚合物对不同混凝剂混凝效果的影响研究并不充分,对于哪种铝系混凝剂去除藻的EOM效果最优及作用机理也没有达成共识[2-4]。
混凝剂的选取是除藻的关键因素之一,AlCl3为传统铝盐絮凝剂,其特点是制备工艺简单。PACl的特点是除浊效果好、成本适中、污泥产量少。本研究对比了2种最常见的铝系混凝剂对藻细胞的去除效果,分析了溶出有机物和形成絮体的特征,讨论了胞外有机物在混凝过程中和铝形态的相互作用,研究了EOM对混凝除藻的影响,为水厂优化混凝处理富藻水提供参考。
铜绿微囊藻的胞外有机物对不同混凝剂除藻效果的影响
Effects of extracellular organic matters of Microcystis aeruginosa on algal removal by different coagulants
-
摘要: 为了保证水厂在高藻条件下的安全清洁供水,以分布较为广泛的铜绿微囊藻(Microcystis aeruginosa)为研究对象,采用2种铝系混凝剂AlCl3和聚合氯化铝(polyaluminum chloride,PACl)进行烧杯混凝实验,考察混凝过程中铝形态对除藻的影响,分析铜绿微囊藻的胞外有机物(extracellular organic matters,EOM)对藻去除的影响机制。结果表明:在PACl浓度为0.04 mmol·L−1时,对藻细胞及浊度的去除率均为90%,而AlCl3摩尔浓度为0.08 mmol·L−1时,藻细胞及浊度去除率才达到90%;在制备PAC时,会水解产生大量中等聚合形态、性质稳定的Alb,在弱酸性到弱碱性的范围(pH为6~8)内,Alb对藻细胞去除率均可达到95%以上;而AlCl3只有在比较窄的pH范围内形成原位Alb,AlCl3只能在较窄的pH范围内(pH为6~6.5)保持95%藻细胞去除率。与AlCl3相比,PACl可去除更多表观分子质量为200~300 Da的胞外聚合物,同时PACl混凝后得到的絮体密实度大于AlCl3。以上结果为研究铝系混凝剂强化去除藻的胞外有机物提供了参考。Abstract: In order to guarantee the safety of tape water under high algae level conditions, the widespread Microcystis aeruginosa was taken as targeted object in this study. Two kinds of coagulants (AlCl3 and polyaluminum chloride) were used to evaluate the effects of Al species on algae removal through jar test, and identify the effect mechanism of extracellular organic matters of Microcystis aeruginosa on algal removal. The results showed that at PACl dosage of 0.04 mmol·L−1, the removal rates of both algae and turbidity reached 90%, while at AlCl3 dosage of 0.08 mmol·L−1, the removal rates of both algae and turbidity reached 90%. During the preparation of PAC, large amount of intermediate polymer species (Alb) with high stability were produced through hydrolysis, which could achieve 95% algae removal within the weak acid and alkaline pH range of 6 to 8. However, Alb could only be in situ formed after AlCl3 dosing into water for hydrolysis within a narrow pH range of 6 to 6.5 and maintain 95% algae removal within it. Compared with AlCl3, PACl could remove more extracellular polymers with apparent molecular mass of 200~300 Da, and the formed flocs through PACl coagulation were more dense than through AlCl3 coagulation. The research results provide reference for study the enhanced removal of algal extracellular organic matters by aluminum coagulants.
-
Key words:
- coagulation /
- Microcystis aeruginosa /
- extracellular organic matters /
- Al species
-
表 1 2种混凝剂铝形态的分布
Table 1. Al species distribution of two coagulants
% 混凝剂种类 Ala Alb Alc AlCl3 92.53 3.92 3.55 PACl 11.47 76.18 12.35 表 2 混凝后絮体的强度因子、恢复因子与分形维数
Table 2. Strength factor, recovery factor and fractal dimensions of flocs formed after coagulation
混凝剂 强度因子/% 恢复因子/% 分形维数 AlCl3 31.82 29.60 1.76 PACl 86.28 49.52 2.17 -
[1] 吴昊澜, 杨晓芳, 沈敏丽, 等. 钙离子对混凝去除水体中铜绿微囊藻的影响[J]. 环境工程学报, 2018, 12(3): 839-847. doi: 10.12030/j.cjee.201708138 [2] GENG C X, CAO N, XU W, et al. Molecular characterization of organics removed by a covalently bound inorganic-organic hybrid coagulant for advanced treatment of municipal sewage[J]. Environmental Science & Technology, 2018, 52(21): 12642-12648. [3] 何晓梅, 古宇力. 给水厂中处理高藻水常用的方法[J]. 能源与环境, 2016(4): 84-85. doi: 10.3969/j.issn.1672-9064.2016.04.042 [4] 张利. 水处理过程中常见的混凝除藻方法综述[J]. 中国资源综合利用, 2019, 37(4): 69-72. doi: 10.3969/j.issn.1008-9500.2019.04.021 [5] CHRISTOPHER W K C, DRIKAS M, HOUSE J, et al. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa[J]. Water Research, 1999, 33(15): 3253-3262. doi: 10.1016/S0043-1354(99)00051-2 [6] 汤鸿霄. 无极高分子絮凝理论与絮凝剂[M]. 北京: 中国建筑工业出版社, 2006. [7] YAN M Q, WANG D S, NIA J, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370. doi: 10.1016/j.watres.2008.04.017 [8] WANG L, LIANG W, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11): 5771-5777. [9] ISHIFUJI S, SATO Y, IMAE H, et al. Identification of coagulation inhibitor proteins from Microcystis aeruginosa[J]. Journal of Japan Society on Water Environment, 2010, 33(6): 73-79. doi: 10.2965/jswe.33.73 [10] 张大为, 徐慧, 王希. 藻形态及混凝剂组成对混凝-超滤过程的影响[J]. 环境科学, 2017, 38(8): 3281-3289. [11] YAN M, WANG D, QU J, et al. Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters[J]. Journal of Colloid and Interface Science, 2007, 316(2): 482-489. doi: 10.1016/j.jcis.2007.08.036 [12] 焦茹媛. 水质特征对铝盐混凝剂混凝过程的影响-残余铝生成及沉后水过滤特性[D]. 北京: 中国科学院大学, 2016. [13] 唐立朋, 魏群山, 刘亚男. 对位芳纶纤维对印染废水中染料的吸附行为研究[J]. 水处理技术, 2018, 44(6): 28-33. [14] JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal nature of natural organic matter flocs[J]. Environmental Science & Technology, 2005, 39(7): 2307-2314. [15] YAN M Q, WANG D S, QU J H, et al. Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization[J]. Water Research, 2008, 42(8/9): 2278-2286. [16] SHI B, LI G, WANG D, et al. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species[J]. Journal of Hazardous Materials, 2007, 143(1): 567-574. [17] SU Z Y, LIU T, YU W Z, et al. Coagulation of surface water: Observations on the significance of biopolymers[J]. Water Research, 2017, 126(2): 144-152. [18] CLASEN J, MISCHKE U, DRIKAS M, et al. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: Flocculant demand of different species and the impact of DOC[J]. Journal of Water Supply Research and Technology, 2000, 49(2): 89-101. doi: 10.2166/aqua.2000.0008 [19] WANG D S, SUN W, XU Y, et al. Speciation stability of inorganic polymer flocculant-PACl[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243(1/2/3): 1-10. [20] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [21] 马敏, 刘锐平, 刘会娟. 预氯化对铝盐混凝铜绿微囊藻过程中溶解性有机物和残余铝的影响[J]. 环境科学学报, 2014, 5(1): 73-78. [22] FICEK D, DERA J, WOZNIAK B. UV absorption reveals mycosporine-like amino acids (MAAs) in Tatra mountain lake phytoplankton[J]. Oceanologia, 2013, 55(3): 599-609. doi: 10.5697/oc.55-3.599 [23] XU H, ZHANG D W, XU Z Z, et al. Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes[J]. Journal of Environmental Sciences, 2018, 63(5): 307-317. [24] 王东升, 汤鸿霄, 栾兆坤. 分形理论及其研究方法[J]. 环境科学学报, 2001, 24(1): 10-16.