-
对于使用传统活性污泥法的污水处理厂而言,二级出水中硝氮(
${\rm{NO}}_3^ - $ -N)含量较高,据统计,${\rm{NO}}_3^ - $ -N含量占总氮(TN)含量的75%左右。反硝化生物滤池因其具有去除${\rm{NO}}_3^ - $ -N能力强、占地面积小、投资费用低、启动快等优点,已被广泛应用于污水的三级处理中[1-3]。脱氢酶活性反映了生物膜内活性微生物量及对有机物的代谢能力,可用来表征生物膜的活性[4],脱氢酶活性与生物膜量之间存在必然的联系。周春生等[5]在研究剩余污泥好气消化中发现脱氢酶活性与MLSS、活菌数之间存在相同的相关性,因此,可使用MLSS代替活菌数研究其与脱氢酶活性之间的关系。MOLL等[6]和向红等[7]均认为生物膜量高不一定意味着生物活性也较高。CRISTINA等[8]认为微生物种类或同种微生物的不同生长阶段均可表现出不同活性。唐宁等[9]在研究厌氧活性污泥时发现,当细菌处于对数期、稳定期和衰亡期时,脱氢酶活性与活菌数之间呈正比关系。
由于微生物的不断生长繁殖和水中悬浮颗粒的累积,滤料表面的生物膜量越来越多,若不能及时通过反冲洗将老化的生物膜冲洗去除,将会影响反应器的过水能力[3, 10-12],同时生物膜内杂质的增多影响微生物对基质的摄取速度和降解能力。周晓黎等[13]研究发现,反硝化生物滤池在反冲洗后生物膜的脱氢酶活性和
${\rm{NO}}_3^ - $ -N去除率均大大地提高。LIU等[3]通过实时监测反硝化生物滤池内生物膜的变化来控制反冲洗强度和频率,从而使系统高效运行。因此,控制好生物膜量,才能使反硝化生物滤池高效稳定运行。然而,关于反硝化生物滤池生物膜量与脱氮效果和脱氢酶活性之间关系的研究鲜有报道。本研究探讨了稳定运行状态下的反硝化生物滤池内生物膜量与脱氮效果和脱氢酶活性之间的相互关系,进而获得更高的TDHA以提高脱氮效果,为系统内生物膜量控制提供参考,同时也为滤池反冲洗控制提供技术指导。
反硝化生物滤池中生物膜量与脱氮效果和脱氢酶活性的关系
Relationship between biofilm mass and nitrogen removal efficiency, dehydrogenase activity in the denitrification biological filter
-
摘要: 采用自主研发的中试反硝化生物滤池处理传统活性污泥法的二沉池出水,研究了稳定运行下生物膜量与脱氮效果和脱氢酶活性之间的关系。结果表明:根据VSS/SS=0.78、VSS/SS>0.78、VSS/SS<0.78,将SS分为3个区域,分别为区域1(232.5~1 246.6 mg·L−1)、区域2(1 246.6~2 542.7 mg·L−1)、区域3(2 542.7~3 523.9 mg·L−1)。在区域2内能获得最大的
${\rm{NO}}_3^ - $ -N和TN去除能力,去除率分别为95.0%和85.7%及最大的总脱氢酶活性(TDHA),为112.5 g;单位质量生物膜脱氢酶活性(DHA)与SS和VSS之间显著负相关,R2分别为0.822和0.876;TDHA随SS的增加而增加,直至VSS/SS开始减小时随之减小。DHA能较好地从微观层面反应微生物的活性,TDHA可从宏观层面反映整个反应器的生物活性,为反硝化生物滤池运行提供参考。Abstract: A self-developed pilot denitrification biological filter was used to study the relationship between biofilm mass and nitrogen removal efficiency, dehydrogenase activity in stable state when treating the secondary effluent from a conventional activated sludge process. The results showed that SS could be divided into three regions: region 1(232.5~1 246.6 mg·L−1), region 2(1 246.6~2 542.7 mg·L−1), region 3(2 542.7~3 523.9 mg·L−1) according to VSS/SS ratio equal to 0.78, higher than 0.78 or less than 0.78. In Region 2, the maximum removal rates of${\rm{NO}}_3^ - $ -N and TN were obtained, and they were 95.0% and 85.7%, respectively. At the same time, the maximum total dehydrogenase activity(TDHA) was also obtained with a value of 112.5 g. Biological membrane dehydrogenase activity per unit mass (DHA) was negatively correlated with SS and VSS, with the R2 of 0.822 and 0.876, respectively. TDHA increased with the increase of SS, and decreased until VSS/SS began to decrease. DHA could better reflect the microbial activity at a micro-level, while TDHA could reflect the biological activity of the whole reactor at a macro-level, which provides theoretical basis for the denitrification biological filter operation. -
[1] SHI Y H, WU G X, WEI N, et al. Denitrification and biofilm growth in a pilot-scale biofilter packed with suspended carriers for biological nitrogen removal from secondary effluent[J]. Journal of Environmental Sciences, 2015, 32: 35-41. doi: 10.1016/j.jes.2014.12.012 [2] JEONG J, HIDAKAB T, TSUNOB H, et al. Development of biological filter as tertiary treatment for effective nitrogen removal: Biological filter for tertiary treatment[J]. Water Research, 2006, 40: 1127-1136. doi: 10.1016/j.watres.2005.12.045 [3] LIU X H, WANG H CH, YANG Q, et al. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: Pilot and full-scale application[J]. Frontiers Environmental Science Engineering, 2017, 11(1): 1-8. doi: 10.1007/s11783-017-0893-y [4] 李今, 吴振斌, 贺锋. 生物膜活性测定中TTC-脱氢酶活性测定法的改进[J]. 吉首大学学报(自然科学版), 2005, 26(1): 37-39. [5] 周春生, 韩相奎. 剩余活性污泥好气消化中TTC-DHA与其它活性参数的相关性[J]. 环境科学, 1991, 12(1): 2-7. [6] MOLL D M, SUMMERS R S, FONSECA A C, et al. Impact of temperature on drinking water biofilter performance and microbial community structure[J]. Environmental Science & Technology, 1999, 33(14): 2377-2382. [7] 向红, 刘武平, 李璇, 等. 生物滤池中生物量与生物活性分析及其净水效果[J]. 中国给水排水, 2011, 27(3): 48-51. [8] CRISTINA F A, SCOTT S, HERNANDEZ M T. Comparative measurements of microbial activity in drinking water biofilter[J]. Water Research, 2001, 35(16): 3817-3824. doi: 10.1016/S0043-1354(01)00104-X [9] 唐宁, 柴立元, 闵小波, 等. 厌氧污泥体系脱氢酶活性表征细菌数的研究[J]. 微生物学杂志, 2005, 25(3): 31-34. [10] LEVEREN H L, TCHOBANOGLOUS G, DARBY J L. Clogging in intermittently dosed sand filters used for wastewater treatment[J]. Water Research, 2009, 43: 695-705. doi: 10.1016/j.watres.2008.10.054 [11] 张宝杰, 闫立龙, 甄捷, 等. 曝气生物滤池最佳反冲洗周期及反冲洗方式研究[J]. 哈尔滨工业大学学报, 2006, 38(7): 1045-1050. doi: 10.3321/j.issn:0367-6234.2006.07.009 [12] SNOWBALL M. water treatment: Reducing backwash with air scouring[J]. Filtration Separation, 2006, 43: 39-40. [13] 周晓黎, 孙迎雪, 沈丹丹, 等. 反硝化生物滤池反冲洗前后的生物膜特征研究[J]. 环境科学与技术, 2015, 38(6P): 26-29. [14] 王建辉, 尹军, 陆海, 等. SBR反应器中有机物去除与硝化反硝化过程TTC-ETS活性变化[J]. 化工学报, 2012, 63(7): 2234-2240. doi: 10.3969/j.issn.0438-1157.2012.07.035 [15] 陈胜. 悬浮填料生物膜特性及其处理高浓度有机废水效能研悬浮填料生物膜特性及其处理高浓度有机废水效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.