[1] |
吴昊澜, 杨晓芳, 沈敏丽, 等. 钙离子对混凝去除水体中铜绿微囊藻的影响[J]. 环境工程学报, 2018, 12(3): 839-847. doi: 10.12030/j.cjee.201708138
|
[2] |
GENG C X, CAO N, XU W, et al. Molecular characterization of organics removed by a covalently bound inorganic-organic hybrid coagulant for advanced treatment of municipal sewage[J]. Environmental Science & Technology, 2018, 52(21): 12642-12648.
|
[3] |
何晓梅, 古宇力. 给水厂中处理高藻水常用的方法[J]. 能源与环境, 2016(4): 84-85. doi: 10.3969/j.issn.1672-9064.2016.04.042
|
[4] |
张利. 水处理过程中常见的混凝除藻方法综述[J]. 中国资源综合利用, 2019, 37(4): 69-72. doi: 10.3969/j.issn.1008-9500.2019.04.021
|
[5] |
CHRISTOPHER W K C, DRIKAS M, HOUSE J, et al. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa[J]. Water Research, 1999, 33(15): 3253-3262. doi: 10.1016/S0043-1354(99)00051-2
|
[6] |
汤鸿霄. 无极高分子絮凝理论与絮凝剂[M]. 北京: 中国建筑工业出版社, 2006.
|
[7] |
YAN M Q, WANG D S, NIA J, et al. Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42(13): 3361-3370. doi: 10.1016/j.watres.2008.04.017
|
[8] |
WANG L, LIANG W, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11): 5771-5777.
|
[9] |
ISHIFUJI S, SATO Y, IMAE H, et al. Identification of coagulation inhibitor proteins from Microcystis aeruginosa[J]. Journal of Japan Society on Water Environment, 2010, 33(6): 73-79. doi: 10.2965/jswe.33.73
|
[10] |
张大为, 徐慧, 王希. 藻形态及混凝剂组成对混凝-超滤过程的影响[J]. 环境科学, 2017, 38(8): 3281-3289.
|
[11] |
YAN M, WANG D, QU J, et al. Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters[J]. Journal of Colloid and Interface Science, 2007, 316(2): 482-489. doi: 10.1016/j.jcis.2007.08.036
|
[12] |
焦茹媛. 水质特征对铝盐混凝剂混凝过程的影响-残余铝生成及沉后水过滤特性[D]. 北京: 中国科学院大学, 2016.
|
[13] |
唐立朋, 魏群山, 刘亚男. 对位芳纶纤维对印染废水中染料的吸附行为研究[J]. 水处理技术, 2018, 44(6): 28-33.
|
[14] |
JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal nature of natural organic matter flocs[J]. Environmental Science & Technology, 2005, 39(7): 2307-2314.
|
[15] |
YAN M Q, WANG D S, QU J H, et al. Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization[J]. Water Research, 2008, 42(8/9): 2278-2286.
|
[16] |
SHI B, LI G, WANG D, et al. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species[J]. Journal of Hazardous Materials, 2007, 143(1): 567-574.
|
[17] |
SU Z Y, LIU T, YU W Z, et al. Coagulation of surface water: Observations on the significance of biopolymers[J]. Water Research, 2017, 126(2): 144-152.
|
[18] |
CLASEN J, MISCHKE U, DRIKAS M, et al. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: Flocculant demand of different species and the impact of DOC[J]. Journal of Water Supply Research and Technology, 2000, 49(2): 89-101. doi: 10.2166/aqua.2000.0008
|
[19] |
WANG D S, SUN W, XU Y, et al. Speciation stability of inorganic polymer flocculant-PACl[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243(1/2/3): 1-10.
|
[20] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[21] |
马敏, 刘锐平, 刘会娟. 预氯化对铝盐混凝铜绿微囊藻过程中溶解性有机物和残余铝的影响[J]. 环境科学学报, 2014, 5(1): 73-78.
|
[22] |
FICEK D, DERA J, WOZNIAK B. UV absorption reveals mycosporine-like amino acids (MAAs) in Tatra mountain lake phytoplankton[J]. Oceanologia, 2013, 55(3): 599-609. doi: 10.5697/oc.55-3.599
|
[23] |
XU H, ZHANG D W, XU Z Z, et al. Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes[J]. Journal of Environmental Sciences, 2018, 63(5): 307-317.
|
[24] |
王东升, 汤鸿霄, 栾兆坤. 分形理论及其研究方法[J]. 环境科学学报, 2001, 24(1): 10-16.
|