-
海产品作为水生物资源,在解决人口激增、资源短缺与环境恶化等全球性问题中扮演着越来越重要的角色[1]。为保证海产品的品质,国内外对海产品暂养环境的处理手段大多通过物理方法进行调控[2]。但在高密度的暂养条件下,海产品代谢的加快与暂养池设计的不合理,大量泡沫与污染物堆积于水体,并积累大量硝酸盐与悬浮颗粒物,致使海产品暂养环境恶化[3-5]。当总悬浮颗粒物浓度在44 mg·L−1时,会降低暂养水的洁净度[6];水体中氮磷等营养盐的动态失衡则会危及水生态系统的平衡,破坏其物质循环与能量流动,加之暂养池过滤效果差、脱氮除磷效果不佳等问题[7-8],最终造成暂养水体水质恶化。与此同时,暂养水体携带大量污染物,一旦进入受纳水体则严重破坏水域生境[9-10],危害水域生态的健康及物种的多样性。
养殖水体氮、磷含量过高易引发水环境污染,诱发海产品疾病的蔓延[11-12]。目前,传统暂养水处理工艺逐渐被新型工艺取代,包括物理方法[13-14]、化学方法[15]和生物方法[16-17]。基于对海产品暂养水处理的更高的要求,驯化富集耐低温、嗜盐微生物菌种,并用于处理受纳水体,已逐渐成为当下水域生态和环境工程等领域的研究重点[18-20]。本研究通过构建低温条件下高盐微生物驯化系统,富集培养了低温耐盐菌种,分析了群落结构及物种多样性,并以玉米芯和玉米衣为碳源,探究了低温条件下暂养水处理与微生物驯化富集的耦合效应,可为低温菌种的筛选和水处理技术的拓展提供参考。
基于异构载体的海产品暂养水的协同处理
Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers
-
摘要: 针对海产品暂养水盐度高、低温环境下靶向菌难驯化、难富集等问题,构建了微生物驯化富集装置,采用玉米芯作为异构载体与碳源,在低温条件下,通过检测水质与微生物群落结构等指标,探究了海产品暂养水对优势菌种演替的推动作用以及微生物群落结构与异构载体的相关性,并对污染物降解与水处理效果进行了分析评价。结果表明:在低温条件下,海产品暂养水对微生物的驯化富集效果较佳;以属水平为例,经过驯化富集培养的菌液主要以假单胞菌属(Pseudomonas)、拟杆菌属(Bacteroides)和气单胞菌属(Aeromonas)为主,同时异构碳源的构造也对微生物的生长起到一定的促进作用;挂膜后的异构碳源对高盐暂养水的处理效果较佳,脱氮率达到(73.46±0.55)%,除磷率为(40.03±0.55)%,除沫率为(82.14±0.23)%。该装置在投入靶向菌与异构碳源后,提高了对高盐暂养水的处理能力;同时,玉米芯作为碳源供给,其缓释效果能够克服能量的过释并减少能耗,保证微生物的存活与运行。研究探讨了微生物与异构载体协同处理高盐暂养水的效果及其耦合效应,为高盐暂养水处理技术的创新与农用废弃物的回收利用提供了参考。Abstract: Aiming at the problems of difficult acclimation and enrichment of target bacteria at high salinity and low temperature environment for temporary water of seafood based, a microbial domestication and enrichment device was constructed with corn cob as the heterogeneous carrier and carbon source. Through detecting water quality and microbial community structure, the promotion of the dominant bacteria succession by temporary aquaculture water of seafood and the correlation between microbial community structure and heterogeneous carrier were investigated. The effects of pollutants degradation and water treatment were also analyzed and evaluated. The results showed that the acclimation and enrichment of microorganisms in salt-rich temporary aquaculture water of seafood were better at low temperature. Taking generic level as an example, the acclimated and enriched bacterial liquids mainly consisted of Pseudomonas, Bacteroides and Aeromonas, and the structure of heterogeneous carbon source also promoted the growth of microorganisms. The heterogeneous carbon source after biofilm-hanging had a good performance on the high-salt temporary aquaculture water treatment, the denitrification rate, the phosphorus removal rate and the foam removal rate reached (73.46+0.55)%, (40.03+0.55)% and (82.14+0.23)%, respectively. The device improves its treatment ability of high-salt temporary aquaculture water by introducing targeted bacteria and heterogeneous carbon sources. Meanwhile, as a carbon source, corn cob could overcome energy over-release and reduce energy consumption, and ensure the survival and operation of microorganisms. The synergistic effect and coupling effect of microorganisms and heterogeneous carriers in high salinity temporary aquaculture water treatment were studied and discussed, which provided the corresponding reference for the innovation of high salinity temporary aquaculture water treatment technology and the recovery and utilization of agricultural wastes.
-
表 1 不同粒径颗粒与除沫、脱氮和除磷的效果
Table 1. Effects of particle size on foam removal, nitrogen removal and phosphorus removal
粒径/μm 除沫率/% 脱氮率/% 除磷率/% <50 76.06±0.55 76.06±0.25 40.79±0.28 50~90 82.14±0.23 78.65±0.15 43.07±0.55 >90 79.36±0.15 76.34±0.55 40.05±0.17 -
[1] JAC A A, SWAR T, JORIEN Z. Utilitarian and nonutilitarian valuation of natural resources: A game-theoretical approach[J]. Restoration Ecology, 2018, 26: 44-53. doi: 10.1111/rec.12504 [2] 王红, 王少华, 熊光权, 等. 水产品保鲜技术研究及发展趋势[J]. 湖北农业科学, 2019, 58(12): 15-18. [3] HAMLIN H J, MOORE B C, EDWARDS T M, et al. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture[J]. Aquaculture, 2008, 281(1/2/3/4): 125. [4] BUSSEL C G J V, SCHROEDER J P, WUERTZ S, et al. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psettamaxima)[J]. Aquaculture, 2012, 326-329: 167. [5] DAVID D K, STEPHEN A S, GREGORY D B, et al. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei:Impacts on survival, growth, antennae length, and pathology[J]. Aquaculture, 2010, 309(1/2/3/4): 109-114. [6] 季明东, 李建平, 叶章颖, 等. 泡沫分离器去除养殖循环水中不同粒径细微颗粒物的效果[J]. 农业工程学报, 2018, 34(19): 202-207. doi: 10.11975/j.issn.1002-6819.2018.19.026 [7] 张饮江, 汪之和, 沈月新, 等. 日本鳗鲡离水保活技术的初步研究[J]. 水产科技情报, 2005, 32(6): 256-258. doi: 10.3969/j.issn.1001-1994.2005.06.011 [8] 何蓉, 谢晶. 水产品保活技术研究现状和进展[J]. 食品与机械, 2012, 28(5): 243-246. doi: 10.3969/j.issn.1003-5788.2012.05.064 [9] 张婧. 铜绿微囊藻有机物氯化消毒副产物的形成及去除机理研究[D]. 天津: 天津大学, 2014. [10] 闻韵, 刘小佳, 王晓慧. UASB去除畜禽养殖废水有机物及产气特性研究[J]. 水处理技术, 2018, 44(5): 108-112. [11] WILLIMA M F, KAZINA S B. Localization of superoxide dismutase activity in rat tissues[J]. Free Radical Biology & Medicine, 1997, 22(1/2): 241-248. [12] 史东杰, 朱华, 张欣, 王文峰, 孙砚胜. 氨氮对锦鲤相关酶活性和基因表达的影响[J]. 江苏农业科学, 2019, 47(3): 150-153. [13] 李日强, 李松桧, 王江迪. 沸石的活化及其对水中氨氮的吸附[J]. 环境科学学报, 2008, 28(8): 1618-1624. doi: 10.3321/j.issn:0253-2468.2008.08.019 [14] 李玉全, 张海艳, 张云梅. 简易物理措施处理养殖废水的效果分析[J]. 中国农学通报, 2009, 25(4): 274-276. [15] 郭琳, 陈云嫩, 刘晨, 等. 硫酸铵镁沉淀法回收稀土硫酸铵废水中高浓度氨氮试验研究[J]. 现代化工, 2018, 38(8): 73-76. [16] 侯勤成. 生物修复技术在水产养殖中的应用[J]. 安徽农学通报, 2009, 15(2): 29-30. doi: 10.3969/j.issn.1007-7731.2009.02.015 [17] 陈刚, 姚远, 王艾荣, 等. 膜生物反应器与其他污水处理技术的集成工艺综述[J]. 净水技术, 2016, 35(3): 16-21. doi: 10.3969/j.issn.1009-0177.2016.03.003 [18] 钟如永. 微生态制剂在现代水产养殖中的使用[J]. 现代农业, 2019(4): 79-80. doi: 10.14070/j.cnki.15-1098.2019.04.064 [19] 罗国芝. 水产养殖用水可重复利用性评估指标及相关标准分析[J]. 上海海洋大学学报, 2018, 27(5): 748-755. doi: 10.12024/jsou.20170402038 [20] 邱文倩, 林坚, 华永有. 水产养殖水环境氯霉素污染状况研究[J]. 中国公共卫生, 2019, 35(2): 246-249. doi: 10.11847/zgggws1119891 [21] 郑林雪, 李军, 胡家玮, 等. 同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015, 35(1): 116-121. [22] 邵留, 兰燕月, 姬芬, 等. 玉米芯强化生物反应器对罗非鱼循环养殖废水脱氮效果研究[J]. 海洋渔业, 2018, 40(2): 217-226. doi: 10.3969/j.issn.1004-2490.2018.02.011 [23] CAO Q, WANG H, CHEN X, et al. Composition and distribution of microbial communities in natural river wetlands and corresponding constricted wetlands[J]. Ecological Engineering, 2017, 98: 40-48. doi: 10.1016/j.ecoleng.2016.10.063 [24] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [25] 张志东, 顾美英, 王玮, 等. 基于高通量测序的辐射污染区细菌群落特征分析[J]. 微生物学通报, 2016, 43(6): 1218-1226. [26] 李龙翔. 厌氧氨氧化膜生物反应器脱氮性能及膜污染研究[D]. 济南: 山东大学, 2018. [27] JESSICA S, ANDREA D C, SAULO V D G, et al. High-quality treated wastewater causes remarkable changes in natural microbial communities and intI1 gene abundance[J]. Water Research, 2019, 167: 114895. [28] 崔丙健, 高天明, 陈琳. 异育银鲫养殖环境典型病原微生物检测和细菌群落解析[J]. 微生物学通报, 2019, 46(12): 3363-3377. [29] 周海红, 王建龙, 赵璇. pH对以PBS为反硝化碳源和生物膜载体去除饮用水源水中硝酸盐的影响[J]. 环境科学, 2006, 27(2): 290-293. doi: 10.3321/j.issn:0250-3301.2006.02.018 [30] 朱德锐, 刘建, 韩睿, 等. 青海湖嗜盐微生物系统发育与种群多样性[J]. 生物多样性, 2012, 20(4): 495-504. [31] 孟璇, 潘杨, 章豪, 等. 同步去除并富集磷酸盐生物膜驯化过程中微生物种群分析[J]. 环境科学, 2018, 39(6): 2802-2809. [32] 陈涛, 于鲁冀, 张新民, 等. 玉米芯强化水平潜流人工湿地脱氮研究[J]. 工业安全与环保, 2018, 44(8): 73-76. doi: 10.3969/j.issn.1001-425X.2018.08.021 [33] 赵冰怡, 陈英文, 沈树宝. C/N比和曝气量影响MBR同步硝化反硝化的研究[J]. 环境工程学报, 2009, 3(3): 400-404. [34] 张立秋, 黄有文, 李淑更, 等. C/N和曝气时间对固体碳源SND处理低碳污水的影响[J]. 工业水处理, 2018, 38(5): 67-70. doi: 10.11894/1005-829x.2018.38(5).067 [35] 陈佼, 张建强, 黄雯, 等. 玉米芯缓释碳源对CRI系统脱氮效能的影响[J]. 环境科学与技术, 2018, 41(4): 103-109. [36] 张思文, 党志, 彭丹, 等. H2O2/NaOH改性玉米秸秆制备石油吸附剂的实验研究[J]. 农业环境科学学报, 2011, 30(11): 2384-2388. [37] 唐婧, 黄盼宁, 傅金祥, 等. 玉米芯为外碳源对SBBR反硝化除磷性能的影响[J]. 环境工程学报, 2016, 10(9): 4705-4710. doi: 10.12030/j.cjee.201601208 [38] 裴媛媛, 刘敬勇, 王靖宇, 等. 农业废弃物再生吸附剂制备及其在染料废水处理中的研究进展[J]. 安徽农学通报, 2011, 17(14): 91-93. doi: 10.3969/j.issn.1007-7731.2011.14.047 [39] 陈亚伟, 苗娟, 魏学锋, 等. 玉米秸秆制备活性炭吸附剂新工艺[J]. 环境保护科学, 2010, 36(5): 69-72. doi: 10.3969/j.issn.1004-6216.2010.05.022