Processing math: 100%

基于异构载体的海产品暂养水的协同处理

卢家磊, 兰燕月, 张饮江, 吴圣哲, 徐成龙, 区丽华. 基于异构载体的海产品暂养水的协同处理[J]. 环境工程学报, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
引用本文: 卢家磊, 兰燕月, 张饮江, 吴圣哲, 徐成龙, 区丽华. 基于异构载体的海产品暂养水的协同处理[J]. 环境工程学报, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
LU Jialei, LAN Yanyue, ZHANG Yinjiang, WU Shengzhe, XU Chenglong, OU Lihua. Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
Citation: LU Jialei, LAN Yanyue, ZHANG Yinjiang, WU Shengzhe, XU Chenglong, OU Lihua. Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131

基于异构载体的海产品暂养水的协同处理

    作者简介: 卢家磊(1996—),男,硕士研究生。研究方向:水处理技术。E-mail:Jialei_lu@163.com
    通讯作者: 张饮江(1961—),男,硕士,教授。研究方向:水域环境生态及水处理技术。E-mail:yjzhang@shou.edu.cn
  • 基金项目:
    大学生创新创业训练计划项目(S201910264062)
  • 中图分类号: X52

Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers

    Corresponding author: ZHANG Yinjiang, yjzhang@shou.edu.cn
  • 摘要: 针对海产品暂养水盐度高、低温环境下靶向菌难驯化、难富集等问题,构建了微生物驯化富集装置,采用玉米芯作为异构载体与碳源,在低温条件下,通过检测水质与微生物群落结构等指标,探究了海产品暂养水对优势菌种演替的推动作用以及微生物群落结构与异构载体的相关性,并对污染物降解与水处理效果进行了分析评价。结果表明:在低温条件下,海产品暂养水对微生物的驯化富集效果较佳;以属水平为例,经过驯化富集培养的菌液主要以假单胞菌属(Pseudomonas)、拟杆菌属(Bacteroides)和气单胞菌属(Aeromonas)为主,同时异构碳源的构造也对微生物的生长起到一定的促进作用;挂膜后的异构碳源对高盐暂养水的处理效果较佳,脱氮率达到(73.46±0.55)%,除磷率为(40.03±0.55)%,除沫率为(82.14±0.23)%。该装置在投入靶向菌与异构碳源后,提高了对高盐暂养水的处理能力;同时,玉米芯作为碳源供给,其缓释效果能够克服能量的过释并减少能耗,保证微生物的存活与运行。研究探讨了微生物与异构载体协同处理高盐暂养水的效果及其耦合效应,为高盐暂养水处理技术的创新与农用废弃物的回收利用提供了参考。
  • 随着世界人口增长与工业化进程加快,水资源短缺与污染问题严重影响人类生活. 印染行业的发展给我们带来了五颜六色的染料和布料,与此同时,也产生了几十万吨的废水[1]. 据统计,印染废水占全球排放废水的20%. 印染废水成分复杂含有大量的染料和无机盐,大量有害染料排放到水体对生态环境造成严重危害,且丰富的无机盐排放也造成了资源浪费[23]. 因此,高效处理印染废水并实现染料和无机盐有效分离具有重要的现实意义.

    目前,常用的印染废水处理工艺有吸附法、化学氧化、电化学沉淀等,这些方法能够有效处理印染废水,但无法实现染料和无机盐混合物选择性分离,且常规工艺易产生二次污染[4]. 与其他技术相比,膜分离技术表现出能耗低、无二次污染等优点,其中纳滤技术被广泛用于处理印染废水中[5]. 然而,商业纳滤膜具有致密的分离层,可以有效去除染料分子并对无机盐有较高的去除率,却很难实现染料分子和无机盐的选择性分离[6]. 最近,较大孔径的疏松复合膜得到越来越多的关注[7].

    近年来,界面聚合(IP)法是制备疏松纳滤膜最常用的方法,通过添加多孔和官能团的材料来制备染料和盐选择性分离的疏松纳滤膜[8],例如,在分离层中加入二维材料、两性离子、金属有机框架(MOFs)等功能性材料,来改善膜的性能[911]. MOFs材料由于其高比表面积和可调节孔径等性质,已广泛用于制备疏松纳滤膜[12]. 例如,Zhou等通过真空过滤辅助和化学交联制备了CuTz-1/GO复合膜,该膜具有高渗透通量40.2 L·m−2·h−1·bar−1,刚果红的去除率高达99.4%,以及低脱盐率(NaCl为0.3%),并且在可见光照下,膜表面附着的染料被有效光催化去除,膜的性能几乎恢复到原来的分离效果[13]. 另外,单宁酸(TA)是一种廉价的天然多酚化合物,具有丰富的酚羟基,可以与金属离子发生螯合反应生成非晶体化的金属/多酚网络,这在膜分离领域引起了关注[14]. Liu等通过配位组装将TA和PEI接枝到聚醚砜/Fe超滤膜上,优化后的疏松复合膜具有较高纯水通量(124.6 L·m−2·h−1·bar−1),高染料去除率(刚果红为99.8%)和低脱盐率(NaCl为5.3%)[15].

    本研究以单宁酸为改性剂,通过溶剂热合成了具有亲水性和光催化特性的MIL-53(Fe) 纳米颗粒 (TA@MIL-53(Fe)). 由于TA含有大量的酚羟基,利用其亲水性包覆复合材料,此外,利用TA与金属离子发生螯合反应,使得TA与MOF中的Fe3+配位生成金属/多酚网络. 利用TA的弱酸性蚀刻MOF,蚀刻过程不会改变材料的框架结构. 因此,TA@MIL-53(Fe) 可以作为良好的材料用于制备疏松复合膜. 对合成的缺陷型TA@MIL-53(Fe) 纳米颗粒的结构和性能进行了系统的研究,以哌嗪(PIP)为水相单体,均苯三甲酰氯(TMC)为油相单体,通过IP法将TA@MIL-53(Fe) 纳米颗粒包埋在PA层中制备疏松复合膜. 详细分析了TA@MIL-53(Fe) 负载对复合膜形貌、化学结构及分离性能的影响. 另外,对最优疏松纳滤膜进行了染料脱盐、长期稳定性、抗污性能及光催化自清洁测试. 结果表明,所制备的疏松复合膜具有高渗透通量,优异的染料截留率和较低的脱盐率,且具有优异的光催化自清洁性能.

    商用聚醚砜(PES, Mw = 5800)购自巴斯夫有限公司(德国). 无水哌嗪(PIP)、正己烷、N, N- 二甲基乙酰胺(DMAc)、二甘醇(DEG)、聚乙二醇(PEG)(Mw: 600、1000、2000、40006000),甲基蓝(MB)、乙醇、硫酸钠(Na2SO4,> 99%)和氯化钠(NaCl,> 99%)由国药化学试剂有限公司供应. 单宁酸(TA)、N, N-二甲基甲酰胺(DMF)、甲基橙(MO)、甲苯胺蓝(TB)购自阿拉丁(中国上海). 六水氯化铁(FeCl3·6H2O)和对苯二甲酸(PTA)购自上海麦克林生物化工有限公司. 亚甲基蓝(MBA)由美亚有限公司提供.

    根据前人的文献报道[16],采用溶剂热法合成了MIL-53(Fe). 合成步骤如图1所示,先称量0.6757 g FeCl3·6H2O 并溶于50 mL DMF 中,然后将0.4153 g PTA 溶于50 mL DMF 中,将两种溶液充分混合搅拌20 min,直至混合物变为透明. 最后,将混合物转移到100 mL聚四氟乙烯高压釜中,加热至120 ℃,持续10 h. 反应器自然冷却至室温后,以5000 r·min−1 离心5 min,用 DMF和乙醇连续洗涤3次,并重复进行3次离心洗涤操作. 将制备的材料在80 ℃ 下干燥12 h, MIL-53(Fe)块状颗粒研磨,筛分并放入干燥箱,备用. 0.4 g TA 溶于50 mL 去离子水中,加入0.1 g MIL-53(Fe)粉末充分混合,在50 ℃下连续搅拌30 min. 然后,通过离心、洗涤和干燥得到 TA@MIL-53(Fe)粉末.

    图 1  TA@MIL-53(Fe)合成路径示意图
    Figure 1.  Schematic diagram of the TA@MIL-53(Fe) synthesis path

    首先称取1.5 g PIP 溶解到100 mL 去离子水中,向PIP溶液里加入0.02 g TA@MIL-53(Fe)粉末并持续搅拌30 min直至TA@MIL-53(Fe)均匀分散在PIP溶液里. 然后,称取0.1 g TMC加入到75 mL 正己烷中,在室温下搅拌10 min直至溶液变透明. 按照图2所示,制备TA@MIL-53(Fe)/TA疏松纳滤膜. 首先将PES超滤膜固定在真空抽滤装置上,将TA@MIL-53(Fe)/PIP混合溶液倒到膜上,在空气中静置3 min,利用真空抽滤将材料抽到膜表面. 然后将TMC正己烷溶液倒入到膜上,反应1 min后立即用正己烷和去离子水交替冲洗膜表面数次. 将制备的TA@MIL-53(Fe) 复合膜浸泡在去离子水中,命名为MTPA-X (X表示TA@MIL-53的添加量).

    图 2  复合膜的制备流程图
    Figure 2.  Preparation process of loose composite membranes

    使用扫描电子显微镜(SEM,Hitachi SU5000,Japan)对MIL-53(Fe)和TA@MIL-53(Fe)的表面形貌进行了表征. 使用IS10光谱仪(赛默飞世尔科学公司)测定材料和复合膜的化学键. 利用X射线衍射(XRD; Bruker, D8 Advanced)分析了所制备的纳米粒子的晶体结构. 用热重分析表征了纳米粒子的热稳定性. 在150 mL·min−1的N2气氛中,纳米粒子的温度以10 ℃·min−1 的速率由25 ℃ 升高到1000 ℃. 使用能量色散X射线光谱(EDX-Mapping; X Flash 6110,BRUKER)和 X射线光电子能谱(XPS; Escalab 250XI,Thermo Fisher Scientific)来检测膜表面化学元素的分布.

    膜的分离性能包括渗透性和选择性,是膜性能测试的重要指标. 在本实验中复合膜的渗透通量和截留率采用自制的错流实验装置进行测定. 首先,将复合膜剪成直径为7 cm的圆片,固定在装置支架上,随后使用去离子水在0.2 MPa(2 bar)操作压力下预压30 min,待通量稳定后,收集5 min的渗透液并用量筒读取渗透体积,通过下式(1)计算复合膜的渗透通量:

    stringUtils.convertMath(!{formula.content}) (1)

    式中,PWF(L·m−2·h−1·bar−1)为纯水通量;Q(L)为渗透体积;A(m2)为膜的有效面积;t(h)为操作时间;∆P(bar)为操作压力.

    用无机盐(NaCl和Na2SO4)、染料(MB、MO、MBA、TB)和重金属离子(Cr6+)来分析膜的截留率和渗透性,截留率公式(2)如下:

    stringUtils.convertMath(!{formula.content}) (2)

    式中R(%)为截留率;Cp为流出料液的浓度(mg·L−1);Cf为进料液的浓度(mg·L−1).

    采用台式电导率仪(S 230-B)测定截留前后无机盐溶液的电导率值. 使用哈希的紫外分光光度计(DR 6000)测定截留前后染料溶液的吸光度.

    MWCO是评价膜分离性能的重要参数,本实验选取不同分子量的PEG(Mw=400、600、800、1000、2000、4000 Da)作为实验溶液评估膜的截留尺度. 在操作压力为2 bar,进料液浓度为100 mg·L−1条件下,预压30 min后,收集渗透液. PEG进料液和渗透液浓度使用岛津的TOC-L型TOC仪测定,PEG的截留率按式2计算. 根据公式3计算PEG的斯托克斯直径.

    stringUtils.convertMath(!{formula.content}) (3)

    长期稳定性测试是评估膜分离性能的另一重要参数,本实验制备的复合膜的长期稳定性使用自制的错流过滤装置进行. 以MB(100 mg·L−1)或TB(100 mg·L−1)和NaCl(1 g·L−1)染料盐混合液作为进料液,在操作压力为2 bar下进行20 h膜的稳定性实验.

    膜的抗污性能是判断膜使用寿命及分离性能的另一重要参数,本实验以MB和TB作为污染源,对制备的复合膜进行了抗污性能测试. 在操作压力为2 bar,进料溶液浓度为100 mg·L−1下进行. 首先,将制备的复合膜在2 bar压力下预压30 min,使复合膜渗透通量保持稳定,然后连续通纯水120 min,每30 min记录一次纯水通量记为Jw. 之后,换上浓度为100 mg·L−1的MB溶液运行240 min,每隔30 min记录一次通量记为Jp. 用去离子水清洗30 min以去除表面污染物,随后使用去离子水运行120 min,每30 min记录一次通量记为Jw2,重复上述操作3次. 之后分别以TB和Cr6+溶液进行抗污染循环实验,操作同上述一致. 最后通过引入通量恢复率(FRR)、总污垢率(Rt)、可逆污垢率(Rr)和不可逆污垢率(Rir)等4个指标来评估膜的抗污性能,公式如下:

    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    通过SEM、XRD和FT-IR分析仪器对MIL-53(Fe)和TA@MIL-53(Fe) 进行表征[17]. 如图3(a)所示,用SEM观察MIL-53(Fe)的形貌,呈现八面体结构的锥形体,平均直径为200—500 nm,这与文献报道的相一致[18]. 如图3(b)所示,经过TA改性后,MIL-53(Fe)表面更加光滑且结构均匀,结果表明TA蚀刻后的MIL-53(Fe) 结构不会坍塌,保持原有八面体结构.

    图 3  MOF材料的形貌图:(a) MIL-53(Fe) 的SEM图,(b) TA@MIL-53的SEM图
    Figure 3.  Topography of MOF material: (a) SEM diagram of MIL-53(Fe), (b) SEM diagram of TA@MIL-53(Fe)

    图4(a)所示,用XRD分析MIL-53(Fe) 和TA@MIL-53(Fe) 的晶体结构. 从图4可以观察到,9.3°、12.5°、18.7°、19.2°和21.8°的5个特征峰,这5个特征峰分别对应着(200)、(110)、(-110)、(310)和(311)的晶面,和其他文献中报道的相一致[1718]. 在XRD图里有一些多余的杂峰,与SEM图比较分析,可能是缺陷的MOF坍塌分解和微量有机溶剂造成. 另外,衍射峰的形状相对尖锐,表明本工作合成的粉末具有良好的结晶度. 图4(b)显示的是粉末的红外测试图. 在MIL-53光谱中,13001600 cm−1范围内显示着PTA里—COOH的典型振动峰,1390 cm−11587 cm−1处的吸收峰分别对应羧基的不对称振动和对称振动,而1690 cm−1处的特征峰代表着羰基拉伸振动[19]. 748 cm−1处的峰是由于PTA中苯环的C—H弯曲振动引起. 551 cm−1处的特征峰是由Fe—O拉伸运动引起,这也表明PTA的羧基和Fe3+之间存在金属-氧键. 在TA的FT-IR谱图中,16101541、748 cm−1处的吸收峰分别对应着C—H、C—O和C=C拉伸振动. 3400 cm−11690 cm−1分别对应着O—H伸缩振动和酯基的C=O伸缩振动. 在TA@MIL-53的FT-IR光谱中,出现了上述TA和MIL-53(Fe) 的特征峰,由此表明TA成功改性MIL-53(Fe),与文献中报道的一致[1720].

    图 4  MIL-53(Fe) 和TA@MIL-53(Fe) 的 (a) XRD谱图,(b) FT-IR谱图,(c) TGA谱图
    Figure 4.  (a) XRD, (b) FT-IR, (c) TGA spectra of MIL-53 and TA@MIL-53

    材料的热稳定性和比表面积大小是限制其在膜领域内应用的重要参数[19]. 通过TGA分析粉末的热稳定性,分析结果如图4(c)所示,采用TGA进一步分析MIL-53和TA@MIL-53的化学组成和热稳定性,与MIL-53相比,多出的一段分解温度是由于TA分解造成的,这与TA的分解温度一致. 另外,TA@MIL-53在25 ℃到213.6 ℃范围内出现了8.7%的重量损失,这是由于粉末中残留的水分子和有机溶剂被去除. 另外,根据先前文献报道和PTA的分解温度推测,在289.7 ℃出现陡坡式的重量损失是由MIL-53粉末分解造成的,最后在514.6 ℃分解完全.

    通过SEM和AFM的手段表征TA@MIL-53(Fe) 负载量对复合膜形貌及粗糙度的影响. 如图5(a)一列是复合膜的表面形貌图,纯IP膜表面有一些褶皱疏松的地方,这可能是由于复合膜制备过程中,未将膜冷却到室温直接加入到去离子水中,温差过大造成聚酰胺层交联度降低. 当TA@MIL-53(Fe) 粉末从0.02% wt增加到0.04% wt时,明显的能看到颗粒团聚现象. 另外,随着TA@MIL-53(Fe) 材料在膜上负载量的增加,膜表面PA层还出现了分裂,这可能是纳米颗粒增加使得PA层交联度降低,这也从宏观角度说明了复合膜渗透性降低的原因. 由截面图结果可以看出,MPTA-0和MPTA-0.01的交联层厚度从120 nm增加到550 nm,这是因为添加了TA@MIL-53(Fe) 纳米颗粒造成的. 随着粉末添加量的增加,从膜截面可以看出,PA层的厚度也随之增加,而PA层的膜厚是影响复合膜渗透性-选择性的重要因素. 所以,添加合适尺寸的纳米颗粒可以控制复合膜PA层的厚度,从而优化膜的渗透选择性,有效协调复合膜的trade-off效应[21].

    图 5  不同TA@MIL-53添加量下复合膜的形貌图
    Figure 5.  Morphology of composite film under different TA@MIL-53 additions
    (a) 表面形貌,(b) 横截面形貌,(c) 粗糙度
    (a) Surface topography, (b) cross-sectional topography, (c) Roughness

    图5(c)所示,TA@MIL-53添加量对复合膜粗糙度的影响. MPTA-0纯IP膜与MPTA-0.01复合膜相比,膜的Ra值从17.4 nm增加到了39 nm,这一结果是与TA@MIL-53加入到PA层有关的,在界面聚合过程中,亲水性的TA@MIL-53(Fe)均匀分散在膜表面,但TA@MIL-53(Fe)材料的锥形框架结构使得膜表面高低不平,从而增加了复合膜的粗糙度,这与其他文献中复合膜的结果相一致.

    为了进一步探究TA@MIL-53(Fe) 在复合膜表面中的分散情况,对MPTA-0.02复合膜测了EDS-mapping图谱,从图6(a)中看出,Fe元素均匀分散在复合膜表面,结果表明TA@MIL-53(Fe) 纳米颗粒均匀分散在膜表面. 另外,N元素均匀分散在膜表面,这也从侧面表明PIP和TMC成功反应生成PA层[22].

    图 6  (a) MPTA-0.02复合膜的EDX图,(b) 复合膜的FT-IR光谱图
    Figure 6.  (a) EDX plot of MPTA-0.02 composite membrane, (b) FT-IR spectrum of composite membranes

    为了表征TA@MIL-53(Fe) 复合膜表面化学结构,采用FT-IR对复合膜表面化学官能团进行了测试. 如图6(b)所示,在1582 cm−11489 cm−1处的特征峰分别对应着酰胺基团中的C=O和N—H,这是由基团的拉伸振动引起,这证明了PIP和TMC成功反应生成了PA层. 在1731 cm−1处的特征峰是由羧基的振动引起的,相对于另外两个复合膜,MPTA-0.02复合膜在1731 cm−1处峰面积增加,这可能是由过多的酰氯基团水解产生. 与MPA-0.02膜相比,MPTA-0.02复合膜在3110 cm−1处存在的吸收峰是由TA的—OH伸缩振动引起的,这也表明亲水基团—OH成功引入复合膜[2324]. 与MPTA-0膜相比,MPTA-0.02在768 cm−1处出现的特征峰是由PTA中C—H基团弯曲振动引起,另外,在558 cm−1处出现的新的吸收峰是由于Fe3+和PTA里的—COO基团相互作用引起的Fe—O拉伸,该结果说明了TA@MIL-53(Fe) 成功引入了复合膜的PA层.

    为了进一步探究添加TA@MIL-53(Fe) 纳米颗粒对PA层的影响,并解释MIL-53(Fe) 复合膜和TA@MIL-53(Fe) 复合膜之间的差异,采用XPS谱分析复合膜表面元素组成和元素价态. 在图7(a)的XPS总谱中,检测到Fe、O、C、N和S元素,这与EDS-mapping测试结果相吻合. 图7(b)显示的是MPTA-0.02复合膜的Fe 2p的光谱,725.6 eV和711.8 eV处的两个特征峰分别代表着Fe 2p1/2和Fe 2p3/2. 这两个峰的差值为13.8 eV,说明Fe-oxo团簇中存在Fe3+. 在716.7 eV处观测到的谷峰可归因于卫星峰,这是Fe3+的典型特征. 图7(c)是复合膜的C 1s谱,MPTA-0的C 1s谱在284.9 eV和288.1 eV处有两个特征峰,这是TMC中的C=C/C—C和酰胺基团的C=O. 另外,MPA-0.02的C 1s谱在284.9 eV和288.1 eV处的两个峰对应着PTA里的C=C和C=O. 与MPA-0.02相比,MPTA-0.02复合膜的C 1s谱观察到3个峰,286.2 eV处的峰对应着TA的苯甲酸环[1725],这也证明了TA成功改性MIL-53,亲水性的TA@MIL-53(Fe) 复合膜有助于提高膜的渗透性和抗污性能. 如图7(d)所示,MPA-0.02复合膜在531.6 eV和533.6 eV处的两个峰分别对应着PTA中的O=C(O—Fe) 和O—C. 与MPA-0.02复合膜相比,MPTA-0.02复合膜在532.4 eV处多出的峰对应着TA上未参与反应的羟基[26]. 综上所述,成功利用TA制备出亲水性有缺陷的MIL-53(Fe),并进一步证实将TA@MIL-53(Fe) 纳米颗粒引入PA层.

    图 7  复合膜的XPS谱图:(a) 总元素谱图, (b) Fe 2p谱图, (c) O 1s谱图, (d) C 1s谱图
    Figure 7.  XPS spectra of composite membranes: (a) Total elemental spectra, (b) Fe 2p spectra, (c) O 1s spectra, (d) C1s spectra

    膜表面亲水性是评价膜渗透性能和抗污性能的重要指标. 如图8所示,添加MIL-53(Fe) 和TA@MIL-53(Fe) 纳米颗粒对复合膜接触角的影响. MPTA-0复合膜的水接触角为70.5°,加入TA@MIL-53(Fe) 纳米颗粒后,复合膜水接触角开始下降. 随着TA@MIL-53(Fe) 添加量从0%增加到0.04%,复合膜的水接触角从70.5°降低到34.75°,这是由于有缺陷的TA@MIL-53(Fe) 为水分子提供了更多的通道. 另外,与MPTA-0.02复合膜相比,添加了疏水性的MIL-53(Fe) 纳米颗粒对改善膜的亲水性帮助甚微,这也从另一方面证明了TA成功改性MIL-53(Fe)纳米颗粒,使得TA中的亲水基团(—OH)与MIL-53(Fe)结合,从而提高膜的亲水性[27]. 因此,添加TA@MIL-53(Fe)纳米颗粒降低膜的水接触角,从而达到提高膜的亲水性效果,这与文献报道的结果相一致[2829].

    图 8  TA@MIL-53(Fe) 添加量对复合膜水接触角的影响
    Figure 8.  Effect of TA@MIL-53(Fe) addition on water contact angle of composite membrane

    为了进一步分析膜孔变化,通过不同分子量PEG来测试复合膜的MWCO. 如图9所示,MPTA-0复合膜的MWCO约为2000 Da,当加入TA@MIL-53纳米颗粒后,复合膜的截留性能提高,MPTA-0.02复合膜有效的MWCO约为1665 Da. 根据Stokes半径公式(2-3)计算得到MPTA-0.02复合膜的孔径约为1.02 nm[3031]. 另外,随着TA@MIL-53(Fe) 纳米颗粒的增加,复合膜的截留尺度降低. 因此,为了进一步对复合膜性能做出评估,后续选择MPTA-0.02复合膜做分离性能、稳定性和抗污性能测试.

    图 9  TA@MIL-53(Fe) 复合膜的截留分子量
    Figure 9.  Molecular weight interception of TA@MIL-53(Fe) composite membranes

    采用不同分子量和不同电荷的4种染料作为实验溶液,对MIL-53(Fe)和TA@MIL-53(Fe)复合膜进行分离性能测试(操作条件:0.02 MPa,染料浓度:100 mg·L−1). 如图10所示,MPTA-0复合膜渗透通量为29.3 L·m−2·h−1·bar−1,对阴离子染料MB的截留率为96.3%. 相比于MPTA-0复合膜,当TA@MIL-53(Fe) 负载量从0增加到0.02% wt时,膜渗透通量增加1.8倍,提高到53.6 L·m−2·h−1·bar−1,同时对MB的去除率也有所提高,提高到了99.1%. 这主要是因为亲水性TA@MIL-53(Fe) 纳米颗粒加入PA层有助于在交联层表面形成亲水分子层,提高对水分子的吸引力. 另外,TA@MIL-53(Fe) 的加入会使致密的PA层变得疏松,从而提高膜的渗透通量,TA@MIL-53(Fe) 具有合适的窗口尺寸,可以选择性地截留染料分子[1932]. 随着TA@MIL-53(Fe) 负载量的增加,复合膜截留性能开始下降,这主要是由以下原因造成的,一方面由于过多的TA@MIL-53(Fe) 会在膜表面发生团聚,从而使得PA层性能下降,另一方面是过多的负载量会使得复合膜的交联度降低,使得PA层出现断裂,从而导致复合膜截留性能下降. 对于不同电荷、分子量相近的染料,复合膜表现出对阴离子染料更高的截留率,这可能是由于复合膜带负电荷,对阴离子染料具有强排斥作用[33]. 另外,对于相同电荷的染料,随着染料分子量的提高,截留率也在提高,这主要是由复合膜的孔径筛分决定,此结果与其他文献报道的结果一致[3436].

    图 10  TA@MIL-53(Fe)复合膜对单一组分和染盐混合组分的分离性能(a, b, c)和与其它工作相比较(d)
    Figure 10.  The rejection rate and flux of TA@MIL-53(Fe) composite membrane to single component and mixed component of salt dye (a, b, c), Compare with other works (d)

    除以染料溶液为进料液外,还使用4种无机盐溶液来测试复合膜的盐渗透性能. 如图10(b)所示,随着TA@MIL-53(Fe)添加量的增加,复合膜对无机盐的截留率降低,这主要是由于过多的NPs抑制了缩聚反应,从而破坏了PA层,降低了复合膜的截留性能. 另外,MPTA-0.02复合膜对盐的截留率为NaCl(4.3%)<MgCl2(7.1%)<Na2SO4(11.5%)<MgSO4(15.3%),复合膜表现出较低的盐截留率. 为了进一步探究复合膜染料脱盐性能,选用性能最佳的MPTA-0.02复合膜来测试膜的染盐分离性能. 使用0.1 g·L−1的MB或TB和1 g·L−1的NaCl或Na2SO4混合溶液来进行过滤实验,如图10(c)所示,以染料盐混合液为进料液,MPTA-0.02复合膜的渗透通量在58.9—64.2 L·m−2·h−1·bar−1之间. 与单一染料的分离实验相比,MPTA-0.02复合膜对MB的截留率略微较低,从99.1%降到了96.3%和97.8%. 这主要是由于高浓度的盐与染料分子结合,从而提高了染料分子的水溶性,从而导致复合膜的染料截留率降低. 另外,与单一染料的分离实验相比,MPTA-0.02复合膜对TB的截留率降低较少,这主要是由于复合膜表面带负电荷,阳离子染料吸附到膜表面堵塞膜孔,从而提高复合膜的染料截留率,另一方面,盐溶液提高了染料分子的水溶性,从而降低复合膜的染料截留率,一增一减之下,使得复合膜对TB染料具有较高的去除率(97.9%和96.4%). 总的来说,MPTA-0.02复合膜对染料分子的截留率高达95%以上,并且具有优异的盐渗透性能(高于85%). 图10(d)比较了本研究与其它疏松复合膜的渗透通量和染料截留率[12, 6, 9, 11, 1415, 34]. 结果表明,与其他文献中的疏松复合膜相比,本研究所制备的复合膜具有较高的渗透通量和良好的染料截留率.

    膜的稳定性测试是评估膜性能及推广应用的重要参数. 为了探究MPTA-0.02复合膜在高浓度含盐染料废水中的稳定性,配置100 mg·L−1染料(MB和TB)和1 g·L−1 NaCl混合溶液来模拟染料废水,复合膜在0.2 MPa的操作压力下运行20 h. 如图11所示,运行前3 h,复合膜的渗透通量下降,这是由于混合液中盐离子使得染料分子在水中分散的更加均匀,小的染料分子因为静电效应被吸附到PA层. 另外,图11(b)可看出,与用阴离子染料MB作为模拟废水相比,在阳离子染料TB模拟废水中,复合膜的渗透通量下降的更多,这是由于复合膜表面携带负电荷,对阳离子染料分子具有更强的吸附性,从而使得染料分子堵塞膜孔,导致膜通量下降. 此外,MB和TB染料具有良好的水溶性,在水溶液中可以建立起动态平衡,使过滤过程保持稳定,在过滤过程中,由于浓差极化和膜污染的形成,在复合膜表面渐渐形成了一层薄薄的凝胶层,这也导致复合膜对MB和TB的截留率略有提高,对MB和TB的截留率分别为99.1%和98.4%. 这表明改复合膜对染料具有很好的去除性能. 另外,在长期的运行中保持对NaCl的高渗透性. 总的来说,MPTA-0.02复合膜具有良好的稳定性,可进一步开发用于含盐染料废水的实际应用中.

    图 11  MPTA-0.02复合膜的长期稳定性测试(操作条件:0.2 MPa,100 mg·L−1): (a) MB和1 g·L−1 NaCl的混合溶液, (b)TB和1 g·L−1 NaCl的混合溶液
    Figure 11.  Long-term stability test of MPTA-0.02 composite membrane (Operating conditions: 0.2 MPa, 100 mg·L−1): (a) Mixed solution of MB and 1 g·L−1 NaCl, (b) Mixed solution of TB and 1 g·L−1 NaCl

    膜的抗污染测试是评估膜性的另一个重要参数. 为了进一步探究MPTA-0.02复合膜在染料废水中的应用,采用阴离子染料MB和阳离子染料TB作为污染源,进行复合膜的抗污性能测试. 如图12(a)所示,在处理染料废水时,由于浓差极化作用,在循环的初始阶段通量下降,随着运行的进行,染料分子在膜表面形成凝胶层,进一步造成通量降低并趋于稳定. 为了进一步探究膜的抗污性能和膜污染类型,引入膜通量恢复率(FRR)、总污垢率(Rt)、不可逆污垢率(Rir)和可逆污垢率(Rr). 如图12(b)所示,MB染料所造成的污染主要以可逆污染(Rr=7.7%)为主,这是由于浓差极化作用造成的. 另外,TB染料对复合膜造成的污染主要以不可逆污染(Rir=8.6%)为主,这可能是由于复合膜表面带负电荷,对阳离子染料具有强吸引力,造成的膜污染无法通过水力清洗恢复[3738]. 如图12(c)所示,复合膜的通量恢复率都很高,循环3次MB染料下复合膜的FRR分别为93.6%、93.5%和93.7%,根据之前分析,这主要是由于复合膜对阴离子染料的排斥作用,从而降低了污染结垢形成可能性,该结果表明该复合膜对阴离子染料具有良好的抗污性能. 另外,循环3次TB染料下复合膜的FRR分别为91.3%、95%和93.9%. 相较于其他两次循环,由于静电作用和膜表面缺陷,使得更多的TB分子沉积在膜表面,导致膜通量降低,膜通量恢复率略低. 总的来说,亲水性MPTA-0.02复合膜具有良好的抗污性能,有望进一步开发用于染料废水的实际应用.

    图 12  MPTA-0.02复合膜抗污性能测试: (a) 复合膜在不同染料溶液中循环过滤测试, (b) 复合膜污染情况, (c) 膜的通量恢复率(FRR)
    Figure 12.  MPTA-0.02 composite membrane anti-fouling performance test: (a) cyclic filtration test of the composite membrane in different dye solutions, (b) contamination of the composite membrane, (c) flux recovery rate (FRR) of the membrane

    在印染废水的实际应用中,当膜进料压力过大或膜污染严重时,需要使用水力反冲洗和化学清洗剂来恢复膜的性能,这不仅会损害膜的机体结构,还会降低膜的性能,从而增加膜组件消耗成本. 因此,光催化自清洁膜的开发利用可以有效避免这一问题. 本研究使用UV-VIS光谱进一步研究复合膜的光吸收特性,以反映用MIL-53(Fe) 和TA@MIL-53(Fe) NPs制备的复合膜的自清洁性能. 如图13(a)所示,MPA-0.02和MPTA-0.02复合膜的吸收边缘的波长分别为434 nm和478 nm,这说明了TA改性后的MIL-53(Fe) 吸收边缘发生了红移. 另外,也反映了MIL-53(Fe) 和TA@MIL-53(Fe) 复合膜在可见光范围内的响应能力. 如图13(b)所示,MPA-0.02复合膜的禁带约为2.93 eV,而MPTA-0.02复合膜的禁带宽度为2.75 eV,这表明TA的改性可以增强光的吸收,缩小MIL-53(Fe) 的带隙宽度. 根据相关文献报道,MIL-53(Fe) 在可见光范围内具有光催化特性,但单独的MIL-53(Fe) 的光催化自清洁的性能并不高,Xin等将MIL-53(Fe) 引入纺丝纤维滤膜中,单独使用MIL-53(Fe) 对罗丹明的降解效果只有50%,当引入PS电子受体后,对罗丹明的降解效果达到了60%[39]. 另外,常用的电子受体还有H2O2、TA、过硫酸盐等.

    图 13  (a) 紫外可见吸收光谱, (b) Tauc图, (c) MB溶液和纯水交替进料时的通量变化, (d) 纯水冲洗和可见光照射后复合膜的FRR
    Figure 13.  (a) UV-VIS absorption spectra, (b) Tauc plot, (c) flux variation when MB solution and pure water are fed alternately, (d) FRR of the composite membrane after pure water rinsing and visible light irradiation

    图13(c)显示了3种膜在100 mg·L−1 的MB溶液中进行3循环测试时的通量变化. 预压30 min后,每张膜用纯水过滤60 min,然后以MB溶液为进料液运行60 min. 在第一和第二循环之间,使用纯水对膜进行过滤清洗30 min,在第二和第三循环之间,将膜放在H2O2溶液中并使用可见光照射膜表面30 min. 在通入MB溶液后,由于浓差极化和尺寸效应的共同作用,3张膜的渗透通量大幅度下降,并随之形成凝胶层. 经过水力反冲洗后,3张膜表现出相似的低通量恢复趋势,这表明单纯的水力冲洗,无法有效去除吸附MB所引起的不可逆污染. 如图13(d)所示,在水力冲洗下,MPTA-0、MPA-0.02、MPTA-0.02复合膜的FRR1分别为85.4%、86.3%和85.7%. 然而,在可见光照射下,与MPTA-0复合膜相比,MPA-0.02和MPTA-0.02复合膜的FRR2分别为94.6%和96.5%,这比水力冲洗获得的FRR1多了20%. 这也说明了亲水性和光催化材料组合有望制备出优异自清洁性能的疏松复合膜.

    图14说明了TA@MIL-53(Fe) 疏松复合膜的自清洁机理. 在可见光照条件下,嵌入PA层的TA@MIL-53(Fe)吸收可见光,将电子从价带(VB)激发到导带(CB),在激发过程中形成活性氧(ROS),例如·O2-、·OH、和h+. 其中电子-空穴对(h+)是由TA@MIL-53(Fe) 受可见光照射产生的;·O2-是光生电子与吸附在膜表面的O2进一步反应生成的,另一部分光生电子与H2O2反应生成·OH. 一般来说,光催化剂产生的ROS可以用来降解膜表面的污染物[40],对于染料这类小分子污染物直接与ROS发生氧化还原反应被降解成H2O和CO2,而对于一些大分子污染物会被断裂分子结构转化为小分子物质[41]. 断裂的有机污染物在经过水力冲洗后很容易从膜上去除,从而有效恢复膜通量. 同时实验结果表明经过光催化自清洁后复合膜的渗透通量恢复到了初始膜通量的96.5%.

    图 14  MPTA-0.02复合膜的光催化自清洁机理
    Figure 14.  Photocatalytic self-cleaning mechanism of MPTA-0.02 composite membrane

    在可见光照射条件下,MPTA-0.02复合膜的光催化自清洁的作用机理如下:

    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})
    stringUtils.convertMath(!{formula.content})

    本研究采用单宁酸蚀刻法制备了有缺陷的TA@MIL-53(Fe)纳米颗粒. 随后,采用真空抽滤辅助IP反应制备了TA@MIL-53(Fe)复合膜. 在PA选择层中添加TA@MIL-53(Fe)可以提高复合膜的亲水性,为水分子提供一个特殊的通道,使水通量从29.3 L·m−2·h−1·bar−1增加到53.6 L·m−2·h−1·bar−1. 然而,过多的纳米粒子负载可能会降低PA的交联程度,从而导致保留率的急剧下降. 在最佳条件下制备的复合膜MPTA-0.02具有良好的性能,在染料和无机盐混合溶液中的渗透通量在58.9—64.2 L·m−2·h−1·bar−1之间,对MB和TB的截留率分别为97.8%和96.4% ,对盐的渗透性能高于85%. 此外,MPTA-0.02复合膜长期运行20 h后,水通量和截留率较好,对染料/盐混合溶液的截留率较高. 同时,由于MIL-53(Fe)的光催化活性,制备的复合膜具有良好的自清洁能力,与水力冲洗后膜的通量恢复率相比,膜的通量恢复率高达96.5%. 因此,该复合膜能够实现印染废水中盐和染料的分离,并具有优异的自清洗性能,对印染废水的回用具有重要意义.

  • 图 1  驯化富集装置

    Figure 1.  Domestication and enrichment system

    图 2  脱氮除磷装置

    Figure 2.  Nitrogen and phosphorus removal system

    图 3  经驯化富集培养的硝化菌、反硝化菌以及所形成的生物膜的丰度与均匀度

    Figure 3.  Abundance and uniformity of nitrifying bacteria, denitrifying bacteria and biofilm formed after acclimation and enrichment

    图 4  装置运行期内微生物纲水平和属水平群落构成

    Figure 4.  Microbial community composition at class level and generic level during the operation period of the device

    图 5  微生物驯化富集培养期内装置无机氮浓度的变化

    Figure 5.  Change of inorganic nitrogen concentration in the device during microbial acclimation and enrichment period

    图 6  异构载体的微生物脱氮效果

    Figure 6.  Microbial denitrification in the device with heterogeneous carriers

    图 7  异构载体的微生物除磷效果和磷元素的吸附效果

    Figure 7.  Microbial phosphorus removal by heterogeneous carriers and adsorption of phosphorus elements

    表 1  不同粒径颗粒与除沫、脱氮和除磷的效果

    Table 1.  Effects of particle size on foam removal, nitrogen removal and phosphorus removal

    粒径/μm除沫率/%脱氮率/%除磷率/%
    <5076.06±0.5576.06±0.2540.79±0.28
    50~9082.14±0.2378.65±0.1543.07±0.55
    >9079.36±0.1576.34±0.5540.05±0.17
    粒径/μm除沫率/%脱氮率/%除磷率/%
    <5076.06±0.5576.06±0.2540.79±0.28
    50~9082.14±0.2378.65±0.1543.07±0.55
    >9079.36±0.1576.34±0.5540.05±0.17
    下载: 导出CSV
  • [1] JAC A A, SWAR T, JORIEN Z. Utilitarian and nonutilitarian valuation of natural resources: A game-theoretical approach[J]. Restoration Ecology, 2018, 26: 44-53. doi: 10.1111/rec.12504
    [2] 王红, 王少华, 熊光权, 等. 水产品保鲜技术研究及发展趋势[J]. 湖北农业科学, 2019, 58(12): 15-18.
    [3] HAMLIN H J, MOORE B C, EDWARDS T M, et al. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture[J]. Aquaculture, 2008, 281(1/2/3/4): 125.
    [4] BUSSEL C G J V, SCHROEDER J P, WUERTZ S, et al. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psettamaxima)[J]. Aquaculture, 2012, 326-329: 167.
    [5] DAVID D K, STEPHEN A S, GREGORY D B, et al. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei:Impacts on survival, growth, antennae length, and pathology[J]. Aquaculture, 2010, 309(1/2/3/4): 109-114.
    [6] 季明东, 李建平, 叶章颖, 等. 泡沫分离器去除养殖循环水中不同粒径细微颗粒物的效果[J]. 农业工程学报, 2018, 34(19): 202-207. doi: 10.11975/j.issn.1002-6819.2018.19.026
    [7] 张饮江, 汪之和, 沈月新, 等. 日本鳗鲡离水保活技术的初步研究[J]. 水产科技情报, 2005, 32(6): 256-258. doi: 10.3969/j.issn.1001-1994.2005.06.011
    [8] 何蓉, 谢晶. 水产品保活技术研究现状和进展[J]. 食品与机械, 2012, 28(5): 243-246. doi: 10.3969/j.issn.1003-5788.2012.05.064
    [9] 张婧. 铜绿微囊藻有机物氯化消毒副产物的形成及去除机理研究[D]. 天津: 天津大学, 2014.
    [10] 闻韵, 刘小佳, 王晓慧. UASB去除畜禽养殖废水有机物及产气特性研究[J]. 水处理技术, 2018, 44(5): 108-112.
    [11] WILLIMA M F, KAZINA S B. Localization of superoxide dismutase activity in rat tissues[J]. Free Radical Biology & Medicine, 1997, 22(1/2): 241-248.
    [12] 史东杰, 朱华, 张欣, 王文峰, 孙砚胜. 氨氮对锦鲤相关酶活性和基因表达的影响[J]. 江苏农业科学, 2019, 47(3): 150-153.
    [13] 李日强, 李松桧, 王江迪. 沸石的活化及其对水中氨氮的吸附[J]. 环境科学学报, 2008, 28(8): 1618-1624. doi: 10.3321/j.issn:0253-2468.2008.08.019
    [14] 李玉全, 张海艳, 张云梅. 简易物理措施处理养殖废水的效果分析[J]. 中国农学通报, 2009, 25(4): 274-276.
    [15] 郭琳, 陈云嫩, 刘晨, 等. 硫酸铵镁沉淀法回收稀土硫酸铵废水中高浓度氨氮试验研究[J]. 现代化工, 2018, 38(8): 73-76.
    [16] 侯勤成. 生物修复技术在水产养殖中的应用[J]. 安徽农学通报, 2009, 15(2): 29-30. doi: 10.3969/j.issn.1007-7731.2009.02.015
    [17] 陈刚, 姚远, 王艾荣, 等. 膜生物反应器与其他污水处理技术的集成工艺综述[J]. 净水技术, 2016, 35(3): 16-21. doi: 10.3969/j.issn.1009-0177.2016.03.003
    [18] 钟如永. 微生态制剂在现代水产养殖中的使用[J]. 现代农业, 2019(4): 79-80. doi: 10.14070/j.cnki.15-1098.2019.04.064
    [19] 罗国芝. 水产养殖用水可重复利用性评估指标及相关标准分析[J]. 上海海洋大学学报, 2018, 27(5): 748-755. doi: 10.12024/jsou.20170402038
    [20] 邱文倩, 林坚, 华永有. 水产养殖水环境氯霉素污染状况研究[J]. 中国公共卫生, 2019, 35(2): 246-249. doi: 10.11847/zgggws1119891
    [21] 郑林雪, 李军, 胡家玮, 等. 同步硝化反硝化系统中反硝化细菌多样性研究[J]. 中国环境科学, 2015, 35(1): 116-121.
    [22] 邵留, 兰燕月, 姬芬, 等. 玉米芯强化生物反应器对罗非鱼循环养殖废水脱氮效果研究[J]. 海洋渔业, 2018, 40(2): 217-226. doi: 10.3969/j.issn.1004-2490.2018.02.011
    [23] CAO Q, WANG H, CHEN X, et al. Composition and distribution of microbial communities in natural river wetlands and corresponding constricted wetlands[J]. Ecological Engineering, 2017, 98: 40-48. doi: 10.1016/j.ecoleng.2016.10.063
    [24] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [25] 张志东, 顾美英, 王玮, 等. 基于高通量测序的辐射污染区细菌群落特征分析[J]. 微生物学通报, 2016, 43(6): 1218-1226.
    [26] 李龙翔. 厌氧氨氧化膜生物反应器脱氮性能及膜污染研究[D]. 济南: 山东大学, 2018.
    [27] JESSICA S, ANDREA D C, SAULO V D G, et al. High-quality treated wastewater causes remarkable changes in natural microbial communities and intI1 gene abundance[J]. Water Research, 2019, 167: 114895.
    [28] 崔丙健, 高天明, 陈琳. 异育银鲫养殖环境典型病原微生物检测和细菌群落解析[J]. 微生物学通报, 2019, 46(12): 3363-3377.
    [29] 周海红, 王建龙, 赵璇. pH对以PBS为反硝化碳源和生物膜载体去除饮用水源水中硝酸盐的影响[J]. 环境科学, 2006, 27(2): 290-293. doi: 10.3321/j.issn:0250-3301.2006.02.018
    [30] 朱德锐, 刘建, 韩睿, 等. 青海湖嗜盐微生物系统发育与种群多样性[J]. 生物多样性, 2012, 20(4): 495-504.
    [31] 孟璇, 潘杨, 章豪, 等. 同步去除并富集磷酸盐生物膜驯化过程中微生物种群分析[J]. 环境科学, 2018, 39(6): 2802-2809.
    [32] 陈涛, 于鲁冀, 张新民, 等. 玉米芯强化水平潜流人工湿地脱氮研究[J]. 工业安全与环保, 2018, 44(8): 73-76. doi: 10.3969/j.issn.1001-425X.2018.08.021
    [33] 赵冰怡, 陈英文, 沈树宝. C/N比和曝气量影响MBR同步硝化反硝化的研究[J]. 环境工程学报, 2009, 3(3): 400-404.
    [34] 张立秋, 黄有文, 李淑更, 等. C/N和曝气时间对固体碳源SND处理低碳污水的影响[J]. 工业水处理, 2018, 38(5): 67-70. doi: 10.11894/1005-829x.2018.38(5).067
    [35] 陈佼, 张建强, 黄雯, 等. 玉米芯缓释碳源对CRI系统脱氮效能的影响[J]. 环境科学与技术, 2018, 41(4): 103-109.
    [36] 张思文, 党志, 彭丹, 等. H2O2/NaOH改性玉米秸秆制备石油吸附剂的实验研究[J]. 农业环境科学学报, 2011, 30(11): 2384-2388.
    [37] 唐婧, 黄盼宁, 傅金祥, 等. 玉米芯为外碳源对SBBR反硝化除磷性能的影响[J]. 环境工程学报, 2016, 10(9): 4705-4710. doi: 10.12030/j.cjee.201601208
    [38] 裴媛媛, 刘敬勇, 王靖宇, 等. 农业废弃物再生吸附剂制备及其在染料废水处理中的研究进展[J]. 安徽农学通报, 2011, 17(14): 91-93. doi: 10.3969/j.issn.1007-7731.2011.14.047
    [39] 陈亚伟, 苗娟, 魏学锋, 等. 玉米秸秆制备活性炭吸附剂新工艺[J]. 环境保护科学, 2010, 36(5): 69-72. doi: 10.3969/j.issn.1004-6216.2010.05.022
  • 加载中
图( 7) 表( 1)
计量
  • 文章访问数:  4190
  • HTML全文浏览数:  4190
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-30
  • 录用日期:  2019-09-06
  • 刊出日期:  2020-05-01
卢家磊, 兰燕月, 张饮江, 吴圣哲, 徐成龙, 区丽华. 基于异构载体的海产品暂养水的协同处理[J]. 环境工程学报, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
引用本文: 卢家磊, 兰燕月, 张饮江, 吴圣哲, 徐成龙, 区丽华. 基于异构载体的海产品暂养水的协同处理[J]. 环境工程学报, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
LU Jialei, LAN Yanyue, ZHANG Yinjiang, WU Shengzhe, XU Chenglong, OU Lihua. Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131
Citation: LU Jialei, LAN Yanyue, ZHANG Yinjiang, WU Shengzhe, XU Chenglong, OU Lihua. Cooperative treatment of temporary aquaculture water of seafood based on heterogeneous carriers[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1191-1200. doi: 10.12030/j.cjee.201906131

基于异构载体的海产品暂养水的协同处理

    通讯作者: 张饮江(1961—),男,硕士,教授。研究方向:水域环境生态及水处理技术。E-mail:yjzhang@shou.edu.cn
    作者简介: 卢家磊(1996—),男,硕士研究生。研究方向:水处理技术。E-mail:Jialei_lu@163.com
  • 1. 上海海洋大学海洋生态与环境学院,上海 201306
  • 2. 水域环境生态上海高校工程研究中心,上海 201306
  • 3. 福州鑫恒智海鲜池设备有限公司,福州 350000
基金项目:
大学生创新创业训练计划项目(S201910264062)

摘要: 针对海产品暂养水盐度高、低温环境下靶向菌难驯化、难富集等问题,构建了微生物驯化富集装置,采用玉米芯作为异构载体与碳源,在低温条件下,通过检测水质与微生物群落结构等指标,探究了海产品暂养水对优势菌种演替的推动作用以及微生物群落结构与异构载体的相关性,并对污染物降解与水处理效果进行了分析评价。结果表明:在低温条件下,海产品暂养水对微生物的驯化富集效果较佳;以属水平为例,经过驯化富集培养的菌液主要以假单胞菌属(Pseudomonas)、拟杆菌属(Bacteroides)和气单胞菌属(Aeromonas)为主,同时异构碳源的构造也对微生物的生长起到一定的促进作用;挂膜后的异构碳源对高盐暂养水的处理效果较佳,脱氮率达到(73.46±0.55)%,除磷率为(40.03±0.55)%,除沫率为(82.14±0.23)%。该装置在投入靶向菌与异构碳源后,提高了对高盐暂养水的处理能力;同时,玉米芯作为碳源供给,其缓释效果能够克服能量的过释并减少能耗,保证微生物的存活与运行。研究探讨了微生物与异构载体协同处理高盐暂养水的效果及其耦合效应,为高盐暂养水处理技术的创新与农用废弃物的回收利用提供了参考。

English Abstract

  • 海产品作为水生物资源,在解决人口激增、资源短缺与环境恶化等全球性问题中扮演着越来越重要的角色[1]。为保证海产品的品质,国内外对海产品暂养环境的处理手段大多通过物理方法进行调控[2]。但在高密度的暂养条件下,海产品代谢的加快与暂养池设计的不合理,大量泡沫与污染物堆积于水体,并积累大量硝酸盐与悬浮颗粒物,致使海产品暂养环境恶化[3-5]。当总悬浮颗粒物浓度在44 mg·L−1时,会降低暂养水的洁净度[6];水体中氮磷等营养盐的动态失衡则会危及水生态系统的平衡,破坏其物质循环与能量流动,加之暂养池过滤效果差、脱氮除磷效果不佳等问题[7-8],最终造成暂养水体水质恶化。与此同时,暂养水体携带大量污染物,一旦进入受纳水体则严重破坏水域生境[9-10],危害水域生态的健康及物种的多样性。

    养殖水体氮、磷含量过高易引发水环境污染,诱发海产品疾病的蔓延[11-12]。目前,传统暂养水处理工艺逐渐被新型工艺取代,包括物理方法[13-14]、化学方法[15]和生物方法[16-17]。基于对海产品暂养水处理的更高的要求,驯化富集耐低温、嗜盐微生物菌种,并用于处理受纳水体,已逐渐成为当下水域生态和环境工程等领域的研究重点[18-20]。本研究通过构建低温条件下高盐微生物驯化系统,富集培养了低温耐盐菌种,分析了群落结构及物种多样性,并以玉米芯和玉米衣为碳源,探究了低温条件下暂养水处理与微生物驯化富集的耦合效应,可为低温菌种的筛选和水处理技术的拓展提供参考。

  • 本研究选用的试剂为KNO3、(NH4)2SO4、KH2PO4、NaNO2、C6H12O6、NaHPO4、MgSO4·7H2O、K2HPO4、CaCO3、Na3C6H5O7·2H2O5,以上试剂均为分析纯,来自于国药化学试剂有限公司;硝化菌实验样品采自上海海洋大学海参循环水养殖系统;反硝化菌实验样品采自上海海洋大学滨海基地池塘养殖底泥;玉米芯、玉米衣取自上海市宝山区罗南镇罗南新村农田。

  • 图1所示,实验构建硝化反硝化菌培养容器,由冷水机、硝化菌驯化富集培养器、反硝化菌驯化富集培养器3部分组成,分别用以营造低温环境、驯化、富集培养耐低温、嗜盐菌种。玻璃容器有效容积为10 L,底部置有磁力搅拌器。

    在微生物驯化富集后,设计构建脱氮除磷装置(如图2所示)。该装置由冷水机、储水池、蠕动泵与脱氮除磷反应器4部分组成。冷水机用以营造低温环境,储水池进水,将待处理水体经蠕动泵通入脱氮除磷反应器,反应器内置有经挂膜的玉米芯、玉米衣,对处理水体进行脱氮除磷。

  • 将取自上海海洋大学海参循环水养殖系统的硝化菌实验样品与采自上海海洋大学滨海基地池塘养殖底泥的反硝化菌实验样品放置于4 ℃冰箱,保存备用。玉米芯、玉米衣加入去离子水,浸泡4 h,过滤清洗后,置于鼓风干燥箱中,于50 ℃下干燥12 h,取出置于干燥器中备用。

    参考常规海产品循环暂养水水质指标,添加适量KNO3、(NH4)2SO4、KH2PO4配置实验用水,盐度2.7%~3%,水质指标保持pH为7.27±0.01,DO为(6.65±0.01) mg·L−1,TN为(41.62±0.11) mg·L−1NH+4-N为(8.97±0.05) mg·L−1NO3-N为(32.04±0.10) mg·L−1

    实验采用10 L玻璃容器,加入培养液,硝化菌驯化培养基成分包含(NH4)2SO4、NaNO2;反硝化菌培养基成分包含KNO3、C6H12O6,NaHCO3调节pH至7~7.5,用NaCl调节盐度至(2.7±0.05)%,曝气并用磁力搅拌器进行搅拌,DO保持4 mg·L−1以上,15 ℃恒温培养60 d[21]

    将装置洗净灭菌后,取适量经驯化培养的反硝化菌液(KNO3 4.00 g·L−1、Na3C6H5O7·2H2O 6.00 g·L−1、NaHPO4 1.00 g·L−1、MnSO4·7H2O 0.04 g·L−1、K2HPO4 1.00 g·L−1)于10 L玻璃容器中,使用邵留等[22]的人工强化挂膜方式,将经洗涤和干燥的玉米芯、玉米衣、玉米芯+玉米衣3种载体形式分别置入反硝化菌液中,设置3组实验,充分浸泡3 d,保持容器的内部恒温15 ℃。将已经充分浸泡过反硝化菌的载体浸入富集培养好的硝化菌液((NH4)2SO4 2.00 g·L−1、MnSO4·4H2O 0.01 g·L−1、NaHPO4 0.25 g·L−1、MgSO4·7H2O 0.03 g·L−1、CaCO3 0.3 g·L−1、K2HPO4 0.75 g·L−1)中,经磁力搅拌器搅拌直至挂膜完成。使用NaHCO3溶液调节pH至7~7.5,富集培养60 d,保持15 ℃恒温进行富集培养,保证其增殖。

  • 高通量测序分析方法:取载体表层切片,经EYELA东京理化冷冻干燥机(FDU-1200型 东京理化器械株式会社)低温处理,硝化菌液采用细菌通用引物,上游引物为5'-CARTGYCAYGTBGARTA-3',下游引物HQd5'-TWNGGCATRTGRCARTC-3';反硝化菌液采用nrfA引物,上游引物为5'-CARTGYCAYGTBGARTA-3',下游引物为5'-TWNGGCATRTGRCARTC-3';最后经16S rRNA基因文库测序分析微生物群落结构、丰度及其多样性[23]。高通量测序服务由上海派森诺生物科技股份有限公司提供(上海,中国)。

    常规水质指标测定:采用国家水质标准[24],对TN、NH+4-N、NO2-N、NO3-N、DO、pH进行测定。

  • 1)群落结构(丰度)。使用Rank-Abundance曲线检测载体表层微生物物种丰富和均匀度[25],如图3所示,A1、A2、A3分别代表实验初期(15 d)、中期(30 d)、末期(45 d)载体表层生物膜,XH1和XH2表示硝化菌物种丰度和均匀度;FXH1和FXH2表示反硝化菌物种丰度和均匀度。由图3可知,载体表层微生物的丰度大小序列为FXH1、FXH2>A2>A3>A1>XH1、XH2,载体所附着的反硝化菌的丰度高于硝化菌。但从均匀度方面来看,富集培养的硝化菌均匀度优于反硝化菌,这说明硝化菌种群的个体数目的分配状况对于反硝化菌来说相对合理;在载体均匀度方面,由A3>A2>A1的趋势可知,在低温、高盐条件下,反硝化菌富集培养效果比硝化菌富集培养效果更佳。

    装置运行期间,A2阶段(中期30 d)相较于A1阶段(初期15 d)和A3阶段(末期45 d),载体所附着的微生物膜的丰度状态处在较高的水平,表明装置在A2阶段(中期30 d)运行良好,且生物对于环境的适应性也在增强;A1阶段(初期15 d)处于装置运行的初始阶段,丰度处在较低的水平,其主要原因是:载体上的微生物菌群处于一个适应阶段,增长速度相对较慢,且对于低温高盐水体的实际适用性也需要一定周期来提升[26],同时,该结果与JESSICA等[27]所得的丰度趋势相近;A3阶段(末期45 d)处在装置运行后期,其生物膜的丰度、均匀度从整体上略低于A2阶段(中期30 d),这是由于在一个运行周期内,载体上的微生物随时间的延长,丰度开始降低,于较低的水平处于平衡态,这与崔丙健等[28]对微生物菌落的解析结果相吻合。以上结果说明:本装置在微生物的驯化富集培养过程中具有较好的效果,并能够为其提供较好的好氧厌氧环境,从而达到成功驯化并富集的目的。

    2)微生物多样性。图4为微生物纲水平和属水平群落结构,其优势菌种主要以α-变形杆菌纲(Alphaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)、拟杆菌纲(Bacteroidia)、螺旋体纲(Spirochaete)、鞘脂杆菌纲(Sphingobacteriia)为主。A1表示实验初期载体表层生物膜的微生物数量占比,研究发现,微生物主要以拟杆菌纲(Bacteroidia)、γ-变形菌纲(Gammaproteobacteria)为主,该阶段是微生物的自身因子对低温高盐环境的调控期间,周海红等[29]的研究也证实了拟杆菌纲(Bacteroidia)与γ-变形菌纲(Gammaproteobacteria)生长的适应性与稳定性。装置运行进入中后期,载体的相对丰度产生了明显的变化:从前期的拟杆菌纲(Bacteroidia)、γ-变形菌纲(Gammaproteobacteria)2大优势菌种更替为以拟杆菌纲(Bacteroidia)、γ-变形菌纲(Gammaproteobacteria)、螺旋体纲(Spirochaetes)、α-变形杆菌纲(Alphaproteobacteria)为主的5大优势菌种;整个实验期间,检测出主要的属有7种,实验中期(A2)和后期(A3)的样品主要属的种类数量占比同实验前期有显著差异,载体表层所附着的菌群结构随着低温高盐水体的输入,优势菌门转变为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、螺旋菌门(Spirochaetae)、浮霉菌门(Planctomycetes)。这些菌可从多种生境中分离获得,如海洋、超盐环境、碱性或酸性环境等,且具有很强的污水脱氮能力[30]。装置运行期间,3个样品中变形菌门的比例有所下降,从初始运行阶段的53.61%下降至10.55%,研究到后期仅有8.69%;假单胞菌属(Pseudomonas)作为反硝化菌的主要部分,其占比略高于其他菌属,与本实验前中期NO3-N去除率略高于NH+4-N与TN的去除率变化趋势相一致。

  • 微生物经驯化培养,其数量级达到可投入使用的程度,再对其进行富集培养处理。图5反映了硝化菌在60 d内的培养中NH+4-N、NO2-N、NO3-N的变化情况。在硝化菌驯化培养的1~5 d,NH+4-N与NO2-N浓度变化不大,波动较小,表明硝化菌对新环境适应不足,这与周海红等[29]的研究以及上文的纲水平、属水平变化情况相符。而NO3-N从第1天开始,呈现缓慢下降的趋势,第4天开始,曲线开始迅速下降,而后趋于动态的稳定趋势,表明反硝化菌在富集的同时消耗了大量的C6H12O6,并对NO3-N进行处理,致使NO3-N含量降低;在6~29 d,NH+4-N的浓度开始降低,且下降加快,从初始的19.23 mg·L−1下降到0.8 mg·L−1,平均每天下降0.67 mg·L−1NO2-N在实验前期也存在较长的缓冲时间,NO3-N在这个周期内的浓度降至1.01 mg·L−1,平均每天下降1.79 mg·L−1,在初始的30 d内,NO2-N的浓度从5.12 mg·L−1降至0.34 mg·L−1,平均每日降低0.31 mg·L−1

    在第2个运行周期(31~60 d)内,硝化菌的活性随着环境的适应得到提升。第30天,加入适量(NH4)2SO4、NaNO2,使NH+4-N浓度提升至35.65 mg·L−1NO2-N浓度达到8.45 mg·L−1。第31天,在反硝化菌培养液之中加入适量的KNO3、C6H12O6,提高培养液的NO3-N浓度至48.46 mg·L−1;在16~30 d,NO3-N浓度下降的速率加快,约为第1周期的2倍;在31~60 d,硝化菌驯化培养液,NH+4-N的浓度总体呈现下降而速率增加的趋势,后趋于平稳。同第1运行周期(1~30 d)相比,第2运行周期NH+4-N浓度下降的速率比第1运行周期增加近1倍,平均每天下降1.22 mg·L−1NO2-N的浓度下降速率较第1个运行周期更快,平均每日下降浓度0.54 mg·L−1

    在第1个运行周期内,由于对运行环境的适应性与对硝化菌生态因子调控的不足,使前期的NH+4-N与NO2-N去除效果不明显;在第2运行周期内,硝化菌的生态因子以及其耐受范围对于环境发生了适应性的变化,摄取了丰富的营养物质,加速了生长代谢,培养液中的NH+4-N与NO2-N的消除速率也随之变快;反硝化菌在繁殖的同时,对环境适应速度要优于硝化菌,且在第2周期的期末,NO3-N的浓度降低至2.01 mg·L−1,平均每天下降3.32 mg·L−1。结果表明,微生物驯化富集培养情况较为良好,与孟璇等[31]对微生物驯化富集的结果趋近,且要优于其近1个百分点。

  • 微生物驯化富集培养后,按照图2的实验步骤,将硝化反硝化菌、玉米芯异构载体投入使用,并运行装置。玉米芯和玉米衣作为缓释碳源与载体,易于微生物的附着,应用于水处理领域可间接增大与水体接触面积,为微生物提供碳源,促进微生物的增殖,提高净化效率[32]

    在装置中置入玉米芯柱、玉米衣柱、玉米芯+玉米衣的组合(以下简称芯衣)3种不同组合的碳源载体来改变其来源与脱氮效果。在微生物脱氮运行时,玉米芯、玉米衣的碳源含量直接影响脱氮效率[33-34]。装置通过改变载体的方式来对低温海水暂养水进行处理。纵观3种碳源组合的处理效果可以发现,玉米芯对脱氮具有促进的效果。由图6(a)可以看出,从初始阶段,玉米芯与芯衣对TN的去除具有良好效果,在17 d和21 d均达到最大值,分别为72.09%和68.88%。而玉米衣对TN的处理则处于一个较低的水平,维持在20%~30%,最高值为30.84%;由图6(b)可以看出,前期与TN的处理效果较为接近,玉米芯和芯衣的NO3-N去除率最高可达66.56%和67.24%,而玉米衣对NO3-N的去除率也存在一个较低的水平,并在该低水平范围内波动,其最高值出现在17 d,为31.71%;由图6(c)可以看出,与TN、NO3-N的去除率相似,其最高值分别为68.76%(玉米芯)、67.38%(芯衣)和27.23%(玉米衣)。

    玉米芯自身构造特殊,其内外层分别形成厌氧/缺氧与好氧层,微生物附着后能够促进脱氮。本实验中,玉米芯表层附着的硝化菌消耗大量DO,致使玉米芯内部呈缺/厌氧环境,有利于反硝化菌的生长与繁殖;作为固相碳源,在水体中碳源含量较低时,玉米芯亦可作为固相碳源,释放一定量有机碳,促进脱氮的进一步运行。装置运行期间,总氮、硝氮与氨氮去除率分别达到(63.46±0.55)%、(65±0.63)%、(62.79±0.52)%。陈佼等[35]在利用玉米芯构造脱氮系统中,将TN与NO3-N的去除率提升较高,表明玉米芯作为碳源与载体的优越性,但其缺乏对NH+4-N的去除率。

    在脱氮基础上,研究了不同碳源条件下微生物对磷元素去除效果。经60 d的周期实验,除磷效果如图7所示。对比玉米芯、玉米衣、芯衣的除磷效果,玉米芯的除磷效果较差,最高仅达到4.49%,但玉米衣对除磷具有显著效果,高于芯衣,两者去除率分别为46.45%和30.51%,说明玉米衣虽然脱氮效果不佳,但对磷元素的吸附和去除具有明显效果。针对玉米衣能够较好地去除磷元素这个特点,采用不同浓度的TP对其进行数据测定,磷元素吸附效果如图7所示。

    随TP浓度的增加,玉米衣对磷的吸附量呈先上升后缓降的趋势。当TP浓度达到10 mg·L−1时,玉米衣的吸附率达到最高值,为81.14%,但此时的吸附量仅为0.813 mg·g−1;当TP浓度达到15 mg·L−1时,玉米衣的吸附量达到最高,为1.172 mg·g−1,吸附率为78.45 %,吸附率开始呈下降的态势,此时的吸附量趋于稳定。有研究[36]表明,在有限的玉米衣的量的情况下,其吸附量也有一个阈值,由实验结果看出,TP初始浓度为10 mg·L−1和15 mg·L−1时,玉米衣所呈现的效果较好,与唐婧等[37]所研究的磷吸附性能相吻合, 达到80%以上。

    在对磷的去除方面,玉米芯作为载体的实验组则表现出乏力的态势,玉米衣的除磷效果显著高于芯衣,去除率分别为46.45%和30.51%。实验表明,玉米芯对脱氮存在较好的效果,玉米衣则对磷元素具有很好的去除效果,但囿于规模限制,结合实际微生物水处理性能,兼顾脱氮除磷除沫、载体材料回收利用及用量优化配比还有待研究。目前,用农业废弃物制备吸附剂是较热门的方向[36,38-39]

    在进行水处理的同时,水体中也会产生较多颗粒物,包括残饵、粪便、鱼体黏液和老化的生物絮体等,通常粒径分布在3~300 μm,而其中95%以上的颗粒物粒径小于20 μm,占颗粒物总质量的47%以上。养殖水中细微颗粒物在过滤时,气泡的细化和水力停留时间的增加对颗粒物去除率有显著影响,特别是对粒径>50 μm的颗粒物。由表1可知,在水力停留时间为1.7 min时,生物膜过滤对粒径为50~90 μm的颗粒物去除率相对较高,整个装置循环除沫率最高可达(82.14±0.23)%。

  • 1)微生物经富集培养后,利用高通量测序,发现其丰度、均匀度都有所提高。其中反硝化菌的多样性提升要优于硝化菌,且变形菌门(Proteobacteria)在适应、驯化、富集之中分别占硝化菌96.40%、反硝化菌91.30%的丰度水平。

    2)变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、螺旋菌门(Spirochaetae)、浮霉菌门(Planctomycetes)等此类污水脱氮菌,在低温高盐条件下,具有较好的繁育与增殖能力,且微生物繁育程度越好,对有机物的降解速率越高。

    3)微生物以玉米芯、玉米衣为载体和碳源,对TN去除率可达72.09%,并在此基础上,对除磷手段进行了拓展:玉米芯和玉米衣协同除磷,其去除率可达46.45%,为低温高盐暂养水处理提供了数据支撑。

    4)本实验运用新型吸附剂材料玉米芯和玉米衣进行系统地脱氮除磷,为农用废弃物合理回收与再利用提供新的途径。

参考文献 (39)

返回顶部

目录

/

返回文章
返回