-
随着城市化进程的加快,城市绿化也因其在提高城市环境质量、维持城市生态平衡等方面的重要作用得以迅速发展。我国城市园林绿化产生的落叶、剪草、枯枝等绿色废弃物,年产量已增加到3.5×108 t左右[1]。堆肥化处理由于可以将废弃物转化为对植物生长和土壤改良有促进效果的堆肥产品,已成为高效处理并实现废弃物再利用的重要途径。绿化废弃物含有丰富的有机物质,这一特点使其腐熟后更容易获得高养分的肥料;但另一方面,绿化废弃物中大量结构紧密的木质纤维素成分使他们不易被微生物分解[2],而且处理不当会造成腐熟缓慢,产生气味污染以及堆肥产品降解不完全等问题。
由于堆肥是以微生物为主导的有机废弃物降解过程,因此,可以通过添加微生物菌剂来加快木质纤维素降解。杭怡琼等[3]研究发现,白腐真菌能够有效且有选择性地降解植物纤维原料中的木质素。黄丹莲[4]发现,木霉菌等真菌不仅能分泌胞外酶,还可以利用菌丝穿插破坏纤维素结构,实现对纤维素的高效分解。此外,纤维素酶作为一种可以促进木质纤维素糖化的酶制剂,在动物饲料和纸浆生产等领域已被广泛应用[5-6]并显示出良好的降解效果,但是在堆肥领域却鲜有关于纤维素酶的应用研究。同时,有研究[2,7-9]表明,适宜的粒径可以提高堆肥期间的微生物活性,从而加快大分子物质的降解速度。过大的粒径会导致通风过度,热量散失;过小的粒径会使持水量过高,通氧量不足,这些都不利于微生物进行代谢活动。已有研究[10]提出的最佳堆肥粒径为5~30 mm,没有统一的标准;而且大部分研究[11-12]缺少对微生物指标的分析或是采用传统的DGGE技术进行微生物检测,无法准确地反映粒径与微生物群落结构和堆肥腐熟效果的关系。因此,初始粒径对绿化废弃物堆肥的影响仍需进一步研究,这也影响着外源添加剂的作用效果。
本研究采用由白腐真菌和木霉菌组成的微生物菌剂,结合纤维素酶制成外源添加剂,进行不同粒径的绿化废弃物堆肥,通过分析堆肥的理化性质和细菌群落结构,探究不同初始粒径和外源添加剂对绿化废弃物堆肥腐熟度的促进效果,并提出最优参数组合,为提高绿化废弃物堆肥质量提供参考。
初始粒径和外源添加剂对绿化废弃物堆肥腐熟效果的影响
Effects of initial particle size and exogenous additives on the maturity enhancement of green waste composting
-
摘要: 为探究纤维素酶结合微生物菌剂作为外源添加剂对绿化废弃物堆肥腐熟效果的影响,以及外源添加剂在不同堆肥初始粒径下的使用效果,设置2种初始粒径(2 mm和5 mm)和4种添加剂配比(纤维素酶制剂∶微生物菌剂=0∶0、0∶4、2∶2、2∶4)进行了为期22 d的高温堆肥实验。通过测定不同初始粒径和添加剂配方的腐熟样品的理化指标和细菌群落,研究了初始粒径和外源添加剂对堆肥性质和菌群结构的影响;并运用主成分分析法综合评价了各处理的腐熟程度。结果表明:2 mm处理组的碳氮比(C/N)降幅更大,腐殖化程度优于5 mm,纤维素酶与菌剂结合添加可降低堆肥C/N,提高发芽指数(GI)并促进腐殖质(HS)、胡敏酸(HA)生成;2 mm处理组和菌剂与纤维素酶混配的处理组对功能性菌群的生长繁殖有促进作用。主成分分析结果表明,2 mm粒径添加配比为2∶2的外源添加剂的处理腐熟程度最高,对绿化废弃物堆肥腐熟和质量提升有明显促进效果。Abstract: In order to explore the effect of cellulase combined with microbial agents as exogenous additives on the composting maturity of greening wastes and the application effect of exogenous additives under different initial particle sizes, a 22 d simulated high temperature composting experiment was conducted with two initial particle sizes (2 mm and 5 mm) and four additive ratios (the ratios of cellulase preparation and microbial agents:0∶0, 0∶4, 2∶2 and 2∶4). The effects of initial particle size and exogenous additives on composts properties and bacterial community structure were investigated by testing the physicochemical indexes and bacterial community of matured samples with different initial particle sizes and additive formulations, and the maturity degree of each treatment was evaluated by principal component analysis. The results showed that the decrease of C/N ratio in 2 mm-size treatment group was larger, and the humification degree was better than that in the 5 mm-size group, the combination of cellulase and microbial agent could reduce the C/N ratio of compost, improve germination index (GI), promote the formation of humic substance (HS) and humic acid (HA). The 2 mm-size treatment group and the treatment group with bacterial agent and cellulase mixture can accelerate the growth and reproduction of degrading functional bacteria. Principal component analysis showed that the treatment with initial particle size of 2 mm and exogenous additive ratio of 2∶2 had the highest comprehensive score, which had an obvious improvement on the maturation and quality of green waste compost.
-
表 1 供试原料基本性质
Table 1. Basic properties of raw materials for compost
供试材料 pH 有机碳/(g·kg−1) 全氮/(g·kg−1) 碳氮比 绿化废弃物 6.76 480.2 8.9 54 干羊粪 7.41 261.2 13.9 18.8 2 mm绿化废弃物堆肥 7.75 336.4 11.6 29 5 mm绿化废弃物堆肥 7.66 340.2 12.6 27 表 2 实验因素水平设计
Table 2. Standard parameters of composting
处理组 粒径/mm 纤维素酶∶菌剂 处理组 粒径/mm 纤维素酶∶菌剂 T1 2 0∶0 T5 5 0∶0 T2 2 0∶4 T6 5 0∶4 T3 2 2∶2 T7 5 2∶2 T4 2 2∶4 T8 5 2∶4 表 3 堆肥指标主成分提取
Table 3. Principal component extraction of compost index
主成分 特征根 贡献率/% 累计贡献率/% 第1主成分 3.204 40.055 40.055 第2主成分 2.054 25.673 65.728 第3主成分 1.596 19.948 85.676 表 4 堆肥主成分综合评分
Table 4. Principal component comprehensive score of composts
处理组 第1主成分得分 第2主成分得分 第3主成分得分 主成分综合得分 综合排名 T1 −1.476 −1.244 −0.666 −1.174 8 T2 −0.734 −0.155 1.500 0.080 4 T3 1.460 0.519 1.527 1.178 1 T4 1.029 −0.880 1.145 0.452 3 T5 −3.352 1.574 −0.209 −0.893 7 T6 1.803 −0.698 −1.938 −0.049 5 T7 −0.152 0.699 −0.911 −0.094 6 T8 1.421 0.210 −0.448 0.508 2 -
[1] ZHANG L, SUN X Y. Effects of bean dregs and crab shell powder additives on the composting of green waste[J]. Bioresource Technology, 2018, 260: 283-293. doi: 10.1016/j.biortech.2018.03.126 [2] ZHANG L, SUN X Y. Effects of earthworm casts and zeolite on the two-stage composting of green waste[J]. Waste Management, 2015, 39: 119-129. doi: 10.1016/j.wasman.2015.02.037 [3] 杭怡琼, 薛惠琴, 陈谊, 等. 利用白腐真菌对稻草秸秆的降解研究[J]. 上海交通大学学报(农业科学版), 2002, 20(s1): 11-14. [4] 黄丹莲. 堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究[D]. 长沙: 湖南大学, 2011. [5] CERDA A, GEA T, VARGAS M C, et al. Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity[J]. Science of the Total Environment, 2017, 589: 56-65. doi: 10.1016/j.scitotenv.2017.02.184 [6] JUTURU V, WU J C. Microbial cellulases: Engineering, production and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 188-203. doi: 10.1016/j.rser.2014.01.077 [7] BARRINGTON S, CHOINIERE D, TRIGUI M, et al. Compost convective airflow under passive aeration[J]. Bioresource Technology, 2003, 86(3): 259-266. doi: 10.1016/S0960-8524(02)00155-4 [8] BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453. doi: 10.1016/j.biortech.2008.11.027 [9] ONWOSI C O, IGBOKWE V C, ODIMBA J N, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects[J]. Journal of Environmental Management, 2017, 190: 140-157. [10] REYES M, OVIEDO E R, DOMINGUEZ I, et al. A systematic review on the composting of green waste: Feedstock quality and optimization strategies[J]. Waste Management, 2018, 77: 486-499. doi: 10.1016/j.wasman.2018.04.037 [11] CHANDNA P, NAIN L, SINGH S, et al. Assessment of bacterial diversity during composting of agricultural byproducts[J]. BMC Microbiology, 2013, 13(1): 99. doi: 10.1186/1471-2180-13-99 [12] WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191-199. doi: 10.1016/j.biortech.2016.12.031 [13] 张凤, 任勇翔, 张海阳, 等. 投加方式和通风速率对脱水污泥堆肥效果的影响[J]. 环境工程学报, 2018, 12(8): 2372-2378. doi: 10.12030/j.cjee.201803070 [14] 张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015. [15] MAO H, LV Z, SUN H, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202. doi: 10.1016/j.biortech.2018.02.082 [16] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [17] 张岩, 王淑琦, 耿雪萌, 等. 纤维素酶促进绿化废弃物堆肥腐熟的初步研究[J]. 环境科学与技术, 2018, 41(2): 144-150. [18] ZHANG L, SUN X Y. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting[J]. Bioresource Technology, 2018, 267: 182-191. doi: 10.1016/j.biortech.2018.07.040 [19] 刘冠宏, 张森, 郭小平, 等. 绿化废弃物堆肥配制喷播基质的试验研究[J]. 环境科学与技术, 2018, 41(5): 61-66. [20] 顾娟, 齐希光, 李秀芬, 等. 固态微生物菌剂的制备及其在好氧堆肥中的应用[J]. 环境工程学报, 2020, 14(1): 253-261. doi: 10.12030/j.cjee.201902121 [21] 方诩, 秦玉琪, 李雪芝, 等. 纤维素酶与木质纤维素生物降解转化的研究进展[J]. 生物工程学报, 2010, 26(7): 864-869. [22] JUMNOODOO V, MOHEE R. Evaluation of FTIR spectroscopy as a maturity index for herbicide-contaminated composts[J]. International Journal of Environment and Waste Management, 2012, 9(1/2): 89-99. doi: 10.1504/IJEWM.2012.044162 [23] ZHANG Q Z, HE G F, WANG J, et al. Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis[J]. Applied Energy, 2009, 86: 233-237. doi: 10.1016/j.apenergy.2009.04.030 [24] 魏自民, 席北斗, 赵越, 等. 城市生活垃圾外源微生物堆肥对有机酸变化及堆肥腐熟度的影响[J]. 环境科学, 2006, 27(2): 376-380. doi: 10.3321/j.issn:0250-3301.2006.02.036 [25] 李英凯, 李佳丽, 孙溪悦, 等. 添加牛粪和园林废弃物对污泥蚯蚓堆肥的影响[J]. 环境工程学报, 2020, 14(1): 197-208. doi: 10.12030/j.cjee.201903086 [26] SHARIFI Z, RENELLA G. Assessment of a particle size fractionation as a technology for reducing heavy metal, salinity and impurities from compost produced by municipal solid waste[J]. Waste Management, 2015, 38(1): 95-101. [27] 刘小鸿, 李磊, 郭小平, 等. 翻堆和补水工艺对绿化废弃物堆肥腐熟度的影响[J]. 科学技术与工程, 2018, 18(7): 281-287. doi: 10.3969/j.issn.1671-1815.2018.07.051 [28] LIU L, WANG S Q, GUO X P, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Management, 2018, 73: 101-112. doi: 10.1016/j.wasman.2017.12.026 [29] 张亚宁. 堆肥腐熟度快速测定指标和方法的建立[D]. 北京: 中国农业大学, 2004. [30] KULIKOWSKA D, KLIMIUK E. Organic matter transformations and kinetics during sewage sludge composting in a two-stage system[J]. Bioresource Technology, 2011, 102(23): 10951-10958. doi: 10.1016/j.biortech.2011.09.009 [31] 曹晓璐. 园林废弃物制造栽培基质过程中微生物的动态变化[D]. 北京: 中国林业科学研究院, 2014. [32] TAHA M, FODA M, SHAHSAVARI E, et al. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges[J]. Current Opinion in Biotechnology, 2016, 38: 190-197. doi: 10.1016/j.copbio.2016.02.012 [33] 劳德坤, 张陇利, 李永斌, 等. 不同接种量的微生物秸秆腐熟剂对蔬菜副产物堆肥效果的影响[J]. 环境工程学报, 2015, 9(6): 2979-2985. doi: 10.12030/j.cjee.20150672 [34] ZHANG L, SUN X Y. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste[J]. Bioresource Technology, 2014, 163: 112-122. doi: 10.1016/j.biortech.2014.04.041