Processing math: 100%

平板玻璃行业烟气污染物治理工艺及减排效果

顾镇, 张志刚, 王彬, 王东歌, 王俊. 平板玻璃行业烟气污染物治理工艺及减排效果[J]. 环境工程学报, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
引用本文: 顾镇, 张志刚, 王彬, 王东歌, 王俊. 平板玻璃行业烟气污染物治理工艺及减排效果[J]. 环境工程学报, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
GU Zhen, ZHANG Zhigang, WANG Bin, WANG Dongge, WANG Jun. Treatment process and emission reduction effect of flue gas pollutants in flat glass industry[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
Citation: GU Zhen, ZHANG Zhigang, WANG Bin, WANG Dongge, WANG Jun. Treatment process and emission reduction effect of flue gas pollutants in flat glass industry[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153

平板玻璃行业烟气污染物治理工艺及减排效果

    作者简介: 顾镇(1995—),男,硕士研究生。研究方向:大气污染控制。E-mail:812713376@qq.com
    通讯作者: 张志刚(1975—),男,学士,教授级高级工程师。研究方向:工业烟气减排。E-mail:zzgzzr@sina.com
  • 基金项目:
    国家重点研发计划(2017YFC0210805)
  • 中图分类号: X51

Treatment process and emission reduction effect of flue gas pollutants in flat glass industry

    Corresponding author: ZHANG Zhigang, zzgzzr@sina.com
  • 摘要: 针对平板玻璃行业烟气排放治理问题,采用定电位电解法、离子色谱法等对不同燃料的玻璃熔窑烟气污染物浓度进行测定,并使用X射线荧光光谱仪(XRF)和激光粒度分析仪(LPSA)对颗粒物特性进行表征,结合工程应用对污染物的治理技术进行研究。结果表明,平板玻璃行业烟气NOx浓度普遍高于2 000 mg·m−3,燃用重油及石油焦粉的烟气中SO2的浓度明显高于天然气和煤制气,烟气颗粒物中普遍含有易导致脱硝催化剂中毒的Na、K等碱金属元素,且粒径主要集中在1~3 μm及20~60 μm。进一步分析表明,燃料是导致平板玻璃行业烟气污染物浓度差异的重要因素,治理工艺应根据燃料种类进行选择。结合工程实例,对燃用重油的玻璃熔窑烟气提出符合现行排放标准要求的治理工艺,为平板玻璃行业烟气深度减排提供技术参考。
  • 紫外高级氧化工艺(ultraviolet-based advanced oxidation process, UV-AOPs)作为一种高效的深度处理技术,已被广泛研究用于去除水中的微量有机污染物。UV/H2O2工艺是一种传统的UV-AOPs,在波长254 nm下,氧化剂H2O2光解产生具有强氧化性的羟基自由基(hydroxyl radicals, HO·,氧化还原电位为1.8~2.7 V[1]),其可非选择性地将大分子有机物降解,从而达到高效去除污染物的目的。该工艺具有氧化效率高、有害副产物少等特点,因而得到了大量的研究关注并在实际工程中进行了应用[2]

    目前关于UV/H2O2工艺的研究主要关注污染物的去除效率、机理、水质条件的影响等方面,且大部分是在实验室完全混合序批式反应器中进行的[3-6]。为预测目标污染物在不同水质条件下的降解效率,从而更合理、高效地利用及调控UV-AOPs,研究人员开发了基于自由基浓度稳态假设(steady-state assumption, SSA)的动力学模型[7]。SSA模型的前提假设为反应器内自由基的浓度处于稳态且溶液完全混合,通过整合反应过程中的主要化学反应,可以计算出不同水质条件下反应器内自由基的平均稳态浓度,进而得到对应反应时间下微污染物的降解效率。因此,SSA模型在完全混合的序批式反应器中具有较高准确性[3,9-10]。TU等[8]通过SSA模型准确预测了丙烯氰在序批式UV/H2O2反应器中的降解速率。然而,UV-AOPs在工程应用中基本都采用过流式反应器,其中的水流远未达到完全混合状态。根据目标污染物的降解动力学和光化学反应原理可知,污染物的降解速率与自由基的浓度成正比,而自由基的浓度与紫外辐照强度以及氧化剂的浓度有关。已有研究[11-12]表明,UV光强呈从灯管向外逐渐降低,氧化剂浓度则呈现从进水口到出水口递减的趋势,因此,在溶液未完全混合时,部分自由基可能难以被目标污染物利用,从而影响污染物的降解效率。为了更好地指导UV/H2O2工艺在实际工程中的应用,开展过流式UV/H2O2工艺降解微量有机污染物的研究并评估SSA模型应用于过流式反应器的准确性,具有重要意义。但截至目前,相关研究仍比较缺乏,尤其对于SSA模型的适用性评估,尚未见报道。

    基于此,本文选取阿特拉津(atrazine, ATZ)作为模型污染物,采用过流式UV/H2O2反应器对其进行降解,分别考察了H2O2浓度、反应器内径对污染物降解效率及经济性的影响。同时,建立UV/H2O2工艺的SSA模型,并与实验结果进行对比,评估分析SSA模型在过流式反应器中应用的准确性。

    实验所用阿特拉津为分析纯,购于梯希爱(上海)化成工业发展有限公司;过氧化氢(质量分数为30%)购于上海沪试实验室器材股份有限公司;所用甲酸、乙腈为色谱纯,硫酸氧钛溶液的质量分数15%,均购于Sigma-Aldrich公司。

    图1所示,本研究在3种不同内径的过流式UV/H2O2反应器中进行,溶液从下方进入,一次性流过反应器后从侧上方的出水口流出。反应器长度均为500 mm,内径分别为35、50和80 mm,记作D35、D50和D80,其对应有效体积为418、950和2 500 mL。功率为21 W的一体化UV灯(GCL436T5L,美国莱劭思)置于反应器中间,灯管长度为436 mm,弧长为356 mm,其在254 nm处的输出功率为6.5 W。UV灯密封于石英套管内,套管外径为20.5 mm。反应器外壁为石英玻璃材质,用黑布包裹以避免外界光线的影响并防止紫外线泄露。以100 mmol·L−1 H2O2为感光剂,测得UV灯的光子流量(q0)为1.71×10−5 Einstein·s−1。以2 µmol·L−1ATZ为感光剂,测得D35、D50和D80反应器的有效路径(b)分别为0.67、1.33和2.29 cm[13]

    图 1  过流式UV/H2O2反应装置示意图
    Figure 1.  Schematic diagram of a flow-through UV/H2O2 reactor

    实验所用ATZ初始浓度为2.2 µmol·L−1,进水水温为21 ℃,根据实验条件在水箱中加入一定量的H2O2溶液,搅拌混合均匀。UV灯在实验开始前预热15 min以保证输出功率稳定。打开蠕动泵,使ATZ和H2O2的混合溶液进入反应器,并在5次水力停留时间后进行取样以保证水质稳定。通过改变反应器进水流量,可得到不同辐照时间(紫外剂量)下ATZ的降解。对于处理高透光率溶液(UVT>95%)的UV反应器而言,反应器平均紫外强度和平均紫外剂量的近似计算如式(1)和式(2)所示。

    Eavg=q0bVU254 (1)
    Favg=Eavgt (2)

    式中:Eavg为平均紫外强度,mW·cm−2V为反应器有效体积,L;U254为254 nm光子的摩尔能量,为471 528 J·Einstein−1Favg为平均紫外剂量,mJ·cm−2t为辐照时间,即反应器水力停留时间(hydraulic retention time, HRT),s。在本研究中,3个过流式UV反应器(D35、D50和D80)的平均紫外强度分别为12.9、11.3和7.4 mW·cm−2。基于获得的不同辐照时间(紫外剂量)下ATZ的去除率,可以分析过流式反应器中ATZ的降解动力学等特征规律。

    H2O2浓度由紫外分光光度计(哈希DR6 000)测得,显色剂为TiOSO4,测量波长为410 nm。ATZ浓度采用高效液相色谱(安捷伦1 200)进行测量,采用紫外二极管阵列检测器,检测波长为234 nm,色谱柱为安捷伦C18柱(150 nm×2.1 nm,3 µm),流动相由0.2%的甲酸水和乙腈组成(10∶90,v∶v),流速为0.8 mL·min−1,进样量为50 µL,柱温为30 ℃。

    UV/H2O2降解ATZ过程涉及的主要化学反应及相关参数如表1所示。ATZ降解速率为直接光解速率与自由基氧化速率之和。根据稳态假设,反应器内自由基生成速率等于消耗速率,自由基浓度恒定不变。通过计算自由基的平均稳态浓度,可以得到对应反应时间下微污染物的自由基氧化降解效率。ATZ直接光解速率、HO·生成速率和消耗速率分别根据式(3)~(5)进行计算。

    表 1  UV/H2O2降解ATZ过程涉及的主要化学反应
    Table 1.  Chemical reactions involved in atrazine degradation by UV/H2O2 process
    反应式参数
    Ф1=0.048,ɛ1=3 397 L·(mol·cm)−1
    Ф2=0.5,ɛ2=18.7 L·(mol·cm)−1
    L·(mol·s)−1
    L·(mol·s)−1
     | Show Table
    DownLoad: CSV
    rd=Φ1q0f1(110A)V (3)
    rHO=2Φ2q0f2(110A)V (4)
    rHO=k1CACs+k2CHCs (5)

    式中:rd为ATZ直接光解速率,mol·(L·s)−1rHO·为HO·生成速率,mol·(L·s)−1r’HO·为消耗速率,mol·(L·s)−1Φ1Φ2分别为ATZ和H2O2的量子产率,mol·Einstein−1A是溶液在254 nm下的吸光度;f1f2分别为ATZ和H2O2的吸光度占总吸光度的比例;k1k2分别为HO·与ATZ和H2O2的二级反应速率常数,L·(mol·s)−1CACHCS分别为ATZ浓度、H2O2浓度和HO·的平均稳态浓度,mol·L−1。其中,A、f1f2分别根据式(6)~(8)进行计算。

    A=CAε1b+CHε2b (6)
    f1=CAε1bA (7)
    f2=CHε2bA (8)

    式中:ɛ1ɛ2分别为ATZ和H2O2的摩尔吸光系数,L·(mol·cm)−1。对高透光率溶液(A<0.02)而言,其中反应物的直接光解速率和HO·生成速率计算(式(3)和式(4))可进一步简化为式(9)和式(10)。

    rdln(10)Φ1q0ε1bVCA (9)
    rHO2ln(10)Φ2q0ε2bVCH (10)

    假定过流式UV/H2O2反应器内的相关反应符合稳态假设理论,即忽略其中非完全混合流态的影响,则根据式(5)和式(10)可计算得到CS,进而得到基于时间的ATZ降解速率和基于紫外剂量的ATZ降解速率,如式(11)~(13)所示。

    CS=2ln(10)Φ2q0ε2bCH(k1CA+k2CH)V (11)
    r=rd+k1CACS=kobsCA (12)
    r=rd+k1CACSEavg=kobsCA (13)

    式中:r为基于时间的ATZ降解速率,mol·(L·s)−1r’为基于紫外剂量的ATZ降解速率,mol·cm2·(L·mJ)−1kobs为ATZ基于时间的降解速率常数,s−1kobs为ATZ基于紫外剂量的降解速率常数,cm2·mJ−1

    根据定义,EEO为将单位体积中目标污染物浓度降低一个数量级(去除90%)所需的电能,kWh·(m3·order)−1,其计算过程如式(14)和式(15)所示。

    EEO=1000WLQlog(Ci/Cf) (14)
    log(Ci/Cf)=0.4343kobst (15)

    式中:WL为灯的输出功率,kW;Q为反应器进水流量,L·h−1CiCf分别是进水和出水中ATZ的浓度,mol·L−1kobs为基于时间的ATZ降解的拟一级反应速率常数,s−1t为反应器的水力停留时间,s。综合式(14)和式(15)可以得到式(16)。

    EEO=1000WL3600×0.4343Vk (16)

    式中:V为反应器的有效体积,L。

    同一反应器条件下改变进水流量,得到目标污染物ATZ的降解效率如图2所示。由图2可以看到,随着辐照时间(HRT)的增加,ATZ的对数浓度接近于线性下降,即过流式反应器中ATZ的降解仍基本符合拟一级反应动力学规律。这表明对UV/H2O2工艺过程而言,反应器中流量及相应流态的变化对污染物降解反应规律影响较小。在单独UV照射下,ATZ能被部分降解。这是因为,虽然ATZ直接光解的量子产率较小(0.048 mol·Einstein−1),但其摩尔吸光系数较大(3 397 L·(mol·cm)−1),从而导致其直接光解速率较大。当在溶液中添加氧化剂H2O2时,H2O2光解产生强氧化性的HO·,其与ATZ的二级反应速率常数为2.3×109 L·(mol·s)−1,使得ATZ的降解速率显著加快,且投加的H2O2浓度越高,污染物降解速率越快。值得一提的是,由于过流式反应器固有的出水水质波动问题,2次平行实验得到的ATZ对数去除率误差相对序批式反应器中的更大,尤其是当反应器内径较大时(图2(b)图2(c))。类似程度的实验结果偏差在采用过流式反应器的其他UV-AOPs工艺研究中也有过报道,故属正常现象[14]

    图 2  过流式UV/H2O2反应器中ATZ降解效率及线性拟合
    Figure 2.  Atrazine degradation efficiency and linear fitting in the flow-through UV/H2O2 reactors

    根据图2中的实验结果得到不同反应器内径和H2O2浓度下ATZ降解的拟一级降解速率常数,并与相同条件下SSA模型计算得到的降解速率常数进行对比,结果如表2所示。由表2可知,不同反应条件下ATZ拟一级降解速率常数的实验值和模拟值的偏差为-19.8%~12.9%(其中反应器D35的44%偏差可能为取样问题导致),且单独UV辐照时模型均出现一定程度的低估。对全部的实验值和模拟值进行线性拟合(排除44%异常值,n=11),可以得到一条经过原点且斜率为1.02的直线(R2=0.98)。因此,与序批式完全混合反应器中类似,SSA模型依然可以准确模拟过流式UV/H2O2反应器中ATZ的降解效率。

    表 2  不同反应条件下实验和模拟得到的ATZ拟一级降解速率常数
    Table 2.  Observed and calculated pseudo-first order rate constants of atrazine degradation under various conditions
    反应器H2O2/(mmol·L−1)kobs/s−1kobs/(cm2·mJ−1)相对偏差/%
    实验值模拟值 实验值模拟值
    D3501.3×10−21.0×10−29.9×10−47.9×10−4−19.8
    0.052.8×10−23.1×10−22.1×10−32.4×10−312.9
    0.13.1×10−24.5×10−22.4×10−33.5×10−344.0
    0.25.8×10−26.2×10−24.5×10−34.8×10−37.0
    D5001.0×10−28.9×10−38.9×10−47.9×10−4−11.8
    0.052.9×10−22.7×10−22.6×10−32.4×10−3−5.7
    0.13.6×10−23.9×10−23.2×10−33.5×10−39.4
    0.25.6×10−25.4×10−25.0×10−34.7×10−3−5.2
    D8006.9×10−35.8×10−39.4×10−47.8×10−4−16.6
    0.051.7×10−21.8×10−22.3×10−32.4×10−31.8
    0.12.7×10−22.5×10−23.7×10−33.4×10−3−6.4
    0.23.2×10−23.5×10−24.3×10−34.7×10−37.8
     | Show Table
    DownLoad: CSV

    UV光解H2O2产生的HO·的不均匀分布是影响SSA模型在过流式反应器准确性的主要原因。不同于序批式反应器中通过搅拌实现反应物的近似完全混合,本研究中所用的过流式反应器中水流形态接近于推流,反应器内物质的径向混合程度有限,且具体混合效果与反应器内径和流量相关。在不同HRT下,3个反应器内水流的雷诺(Reynolds, Re)数结果如图3所示。由图3可知,在考察的流量条件下,反应器的雷诺数为25~344,远小于层流临界值2 300,这表明其中水流处于层流状态。同一紫外剂量下,反应器D80中的雷诺数最大,其次为D50、D35,这说明反应器内径越大,溶液的径向混合程度相对越高。这在一定程度上解释了SSA模型在D50和D80中的准确性更高的原因。此外,根据计算流体动力学模拟结果可知,当反应器流速较低时,未知中间产物的浓度将增大,从而导致模拟结果与实验值的偏差增大[15-16]。与其他2个反应器相比,相同紫外剂量下D35中的水流流速也更低,因而容易出现更大偏差。在UV/H2O2工艺的工程应用中,处理流量及水流雷诺数一般比本研究反应器D80中的要大,因此,SSA模型在过流式UV/H2O2反应器实际应用中仍具有较好的适用性。这为工程中UV/H2O2系统性能的快速评估提供了理论基础和技术方法。

    图 3  不同水力停留时间下反应器的雷诺数和平均紫外剂量
    Figure 3.  Reynolds number and average fluence rate of reactors at different HRTs

    图2表2所示,在反应器D35、D50和D80中,H2O2浓度增加均明显提高了ATZ的降解速率。当H2O2浓度增加至0.2 mmol·L−1时,ATZ的kobs分别增加至5.8×10−2、5.6×10−2和3.2×10−2 s−1,分别为单独UV辐照时的4.5、5.6和4.6倍。由式(10)可知,当H2O2浓度增加时,HO·的生成速率增加,从而促进了ATZ的降解。有研究[17]表明,当H2O2浓度为0.1 mmol·L−1和0.2 mmol·L−1时,序批式反应器中得到ATZ的kobs分别约为4.0×10−3 cm2·mJ−1和5.7×10−3 cm2·mJ−1,与本研究中所得结果(表2)较为接近。这表明在相同的紫外剂量下,UV/H2O2工艺降解目标污染物的效率可能不受反应器结构和水流流态的影响。事实上,MIKLOS等[2]在研究UV/H2O2工艺对污水厂出水中微量有机污染物的去除时也得到了类似结论,即目标污染物在序批式反应器和过流式反应器中的降解速率常数相差不大。

    进一步通过SSA模型计算不同反应器中H2O2浓度变化对ATZ降解速率的影响,结果如图4所示。与实验结果类似,在较低的浓度范围内,随着H2O2浓度的增加,3个反应器中ATZ的kobs均得到显著提升,其最大值出现在H2O2浓度约为3 mmol·L−1时,但当H2O2浓度继续增加时,ATZ降解速率缓慢降低。这是由于H2O2同时也是HO·的捕获剂,过量的H2O2会和HO·反应生成氧化性较弱的HO2,从而抑制ATZ降解速率的升高,甚至使反应速率降低[18]。在UV/H2O2工艺降解氧氟沙星[19]、美罗培南[20]、双酚A[21]等的研究中也有着类似的现象。高H2O2浓度下不同内径反应器中ATZ降解速率常数的下降幅度不一,这主要与有效路径不同导致的平均紫外强度下降程度差异有关。

    图 4  SSA模型计算H2O2浓度对ATZ降解速率常数的影响
    Figure 4.  Calculated atrazine degradation rate constants by SSA model at different H2O2 concentrations

    反应器内径对ATZ降解的影响可以分别从kobskobs进行分析。如表2所示,在相同H2O2浓度下,ATZ的kobs随着反应器内径的增加而逐步减小。其原因在于:一方面,在同一光源辐射下,反应器内径越大,其中平均紫外强度Eavg越小,使得ATZ直接光降解速率及HO·产生速率、浓度降低,最终导致ATZ降解速率常数的减小;另一方面,相同H2O2浓度下,3个不同内径的反应器中ATZ的kobs基本相同,如当H2O2浓度为0.2 mmol·L−1时,在反应器D35、D50和D80中分别为4.5×10−3、5.0×10−3和4.3×10−3 cm2·mJ−1。SSA模型模拟结果(表2)也进一步证实了相同紫外剂量下不同反应器中ATZ降解效率无显著差异。

    由式(1)可知,对高透光率反应体系而言,其中q0b/VEavg成正比。因此,不同反应器内的微量有机污染物的直接光解速率和自由基生成速率主要取决于反应器内的Eavg(式(9)和(10))。另一方面,反应器内自由基的消耗速率只与处理水质有关(式(5))而可认为是恒定值,则稳态自由基浓度也与Eavg成正比。综上所述,从稳态假设理论出发,3种内径的UV反应器中ATZ的kobs主要决定于相应的Eavg。将基于时间的降解速率除以Eavg可以得到kobs(式(13)),因此,在相同的ATZ及H2O2浓度下,不同反应器内的ATZ的kobs十分接近(表2)。随着H2O2浓度的增加,溶液在254 nm下的吸光度(A)大于0.02,导致式(3)和式(4)进行泰勒展开时误差较大,此时不能通过式(9)和式(10)预测反应器中ATZ的降解速率。结合SSA模型的模拟结果可知,当H2O2浓度大于0.5 mmol·L−1时,反应器内径将对ATZ的kobs产生影响(图4)。

    在考察评估实际UV-AOPs反应器性能时,通常比较的是相同水质和流量条件下反应器出口处目标污染物的浓度(或去除率)大小。在本研究中,由于3个反应器内径不同,相应的水力停留时间及基于时间的ATZ降解速率常数都将不同,直接比较各反应器的kobs值并不能准确评估其效率。另一方面,同一条件下各反应器中得到的ATZ的kobs无明显差别,因此也不适合用作性能参数。根据拟一级反应原理,微量有机污染物在反应器出口处浓度的对数与速率常数和时间(或剂量)的乘积呈线性相关,因此,应综合kobs和HRT或kobsFavg结果来评估反应器性能或经济性。事实上,UV-AOPs工艺中常用的单位能耗(electrical energy per order, EEO)正是综合反应速率和处理流量后的性能评估参数。本研究将采用该参数分析上述3个反应器在不同H2O2浓度下的经济性。

    不同条件下过流式UV/H2O2反应器降解ATZ的EEO实验和模拟值结果如图5所示。与3.1部分的结果类似,在反应器D35中(图5(a)),SSA计算所得EEO值与实验值具有一定偏差,而在反应器D50(图5(b))和D80(图5(c))中,两者基本吻合。此外,在实验条件内,EEO值为0.17~2.52 kWh·(m3·order)−1。有研究[22]表明,UV-AOPs处理微量有机污染物的EEO低于2.5 kWh·(m3·order)−1时具有经济可行性,因此,UV/H2O2工艺在处理水中微量ATZ上具有良好的应用前景。在同一反应器内,随着H2O2浓度的增加,ATZ的降解速率常数逐渐增大,从而导致EEO值逐渐减小。在H2O2浓度相同时,虽然反应器内径的增加会降低ATZ基于时间的降解速率常数,但由于其有效体积的增大,UV/H2O2工艺处理ATZ的EEO值将降低。综上所述,增大H2O2浓度或反应器内径均能降低单位处理能耗,从而提高UV/H2O2工艺的经济效益。

    图 5  不同条件下ATZ降解的EEO实验和模拟值
    Figure 5.  Observed and calculated EEO of atrazine degradation under different conditions

    1)过流式UV/H2O2反应器可以有效降解去除水中微量有机污染物。在不同处理流量下,反应器中ATZ的降解基本符合拟一级反应动力学规律(R2>0.95),且其基于紫外剂量的速率常数与在序批式反应器中的接近。

    2)虽然反应器内水流流态不同于序批式反应器中的完全混合,基于稳态假设的SSA模型仍能准确模拟过流式反应器中ATZ的降解速率,其偏差基本在20%以内。这为实际应用中UV/H2O2系统性能的快速评估提供了理论和技术可行性。

    3)在考察的浓度范围内,H2O2浓度增加会导致HO·的生成速率增加,从而促进ATZ的降解,并提高反应器的经济性。当H2O2浓度过高时,会与HO·反应并抑制ATZ的降解。H2O2浓度大约为3 mmol·L−1时,ATZ的降解速率最快。

    4)不同内径反应器中ATZ基于紫外剂量的降解速率常数无明显差异。反应器内径增大虽然降低了ATZ基于时间的降解速率常数,但由于有效体积的增大,反应器的EEO值将降低,从而使UV/H2O2工艺的效益得到提高。

  • 图 1  烟气采样点示意图

    Figure 1.  Schematic diagram of smoke sampling points

    图 2  烟气污染物浓度分析结果

    Figure 2.  Analysis results of flue gas pollutant concentration

    图 3  不同燃料烟气颗粒物的粒径分布

    Figure 3.  Size distribution of flue gas particles with different fuels

    图 4  某320 t·d−1玻璃熔窑烟气治理工艺路线

    Figure 4.  Treatment process route of flue gas on a 320 t·d−1 glass melting furnace

    图 5  治理后烟气常规污染物的排放浓度

    Figure 5.  Emission concentration of conventional pollutants after treatment

    表 1  主要仪器设备与检测方法

    Table 1.  Main instruments, equipment and testing standards

    检测项目检测方法检出浓度限值/(mg·m−3)仪器设备名称仪器设备型号
    NOx固定源废气 氮氧化物的测定 定电位电解法(HJ 693-2014)3自动烟尘烟气综合测试仪ZR-3260
    SO2固定源废气 二氧化硫的测定 定电位电解法(HJ 57-2017)3自动烟尘烟气综合测试仪ZR-3260
    硫酸雾固定源废气 硫酸雾的测定 离子色谱法(HJ 544-2016)0.2离子色谱仪PIC-10A
    HCl固定污染源废气 氯化氢的测定 硝酸银容量法(HJ 548-2016)2双路烟气采样器ZR-3710
    氟化物大气固定污染源 氟化物的测定 离子选择电极法(HJ/T 67-2001)0.06酸度计PHS-3C
    颗粒物固定源排气中颗粒物测定与气态污染物采样方法(GB/T 16157-1996)电子天平,X射线荧光光仪 激光粒度分析仪FA1004B, EDX-7000, Mastersizer-2000
    检测项目检测方法检出浓度限值/(mg·m−3)仪器设备名称仪器设备型号
    NOx固定源废气 氮氧化物的测定 定电位电解法(HJ 693-2014)3自动烟尘烟气综合测试仪ZR-3260
    SO2固定源废气 二氧化硫的测定 定电位电解法(HJ 57-2017)3自动烟尘烟气综合测试仪ZR-3260
    硫酸雾固定源废气 硫酸雾的测定 离子色谱法(HJ 544-2016)0.2离子色谱仪PIC-10A
    HCl固定污染源废气 氯化氢的测定 硝酸银容量法(HJ 548-2016)2双路烟气采样器ZR-3710
    氟化物大气固定污染源 氟化物的测定 离子选择电极法(HJ/T 67-2001)0.06酸度计PHS-3C
    颗粒物固定源排气中颗粒物测定与气态污染物采样方法(GB/T 16157-1996)电子天平,X射线荧光光仪 激光粒度分析仪FA1004B, EDX-7000, Mastersizer-2000
    下载: 导出CSV

    表 2  不同燃料烟气颗粒物组成

    Table 2.  Composition of flue gas particles with different fuels %

    燃料种类SO3Na2OK2OCaOCr2O3Fe2O3SiO2Sb2O3Al2O3
    重油37.657.478.498.540.630.7812.642.145.31
    天然气10.5835.689.824.170.543.518.832.59
    石油焦粉41.5322.194.242.661.421.215.700.545.66
    煤制气28.727.438.643.232.469.264.147.31
    燃料种类SO3Na2OK2OCaOCr2O3Fe2O3SiO2Sb2O3Al2O3
    重油37.657.478.498.540.630.7812.642.145.31
    天然气10.5835.689.824.170.543.518.832.59
    石油焦粉41.5322.194.242.661.421.215.700.545.66
    煤制气28.727.438.643.232.469.264.147.31
    下载: 导出CSV

    表 3  不同燃料烟气治理工艺优化

    Table 3.  Optimization on treatment process of flue gas with different fuels

    燃料种类SCR前处理优选工艺FGD优选工艺
    天然气/煤制气余热锅炉(高温段) +高温电除尘NID>SDA
    重油余热锅炉(高温段)+干法调质+高温电除尘SDA>NID>CFB
    石油焦粉余热锅炉(高温段)+干法脱硫+高温电除尘CFB>SDA
    燃料种类SCR前处理优选工艺FGD优选工艺
    天然气/煤制气余热锅炉(高温段) +高温电除尘NID>SDA
    重油余热锅炉(高温段)+干法调质+高温电除尘SDA>NID>CFB
    石油焦粉余热锅炉(高温段)+干法脱硫+高温电除尘CFB>SDA
    下载: 导出CSV

    表 4  平板玻璃行业烟气治理工艺技术的对比

    Table 4.  Comparison of flue gas treatment technologies in flat glass industry

    窑炉熔量/(t·d−1)燃料种类烟气治理工艺污染物种类烟气浓度/(mg·m−3)去除率/%
    处理前处理后
    500煤制气旋风除尘器+SCR脱硝+双碱法脱硫+湿式电除尘颗粒物160~24010~3090.0
    SO2700~80060~16085.3
    NOx2 020~2 320220~48083.9
    230天然气高温静电除尘+SCR脱硝+石灰石/石灰-石膏法+湿式电除尘颗粒物120~22010~3088.2
    SO2240~36060~16063.3
    NOx2 200~2 600280~42085.4
    320重油干法调质+高温电除尘+SCR脱硝+SDA脱硫+布袋除尘器颗粒物280~4006~1596.9
    SO2850~1 05040~8093.7
    NOx2 250~2 550120~34090.4
    窑炉熔量/(t·d−1)燃料种类烟气治理工艺污染物种类烟气浓度/(mg·m−3)去除率/%
    处理前处理后
    500煤制气旋风除尘器+SCR脱硝+双碱法脱硫+湿式电除尘颗粒物160~24010~3090.0
    SO2700~80060~16085.3
    NOx2 020~2 320220~48083.9
    230天然气高温静电除尘+SCR脱硝+石灰石/石灰-石膏法+湿式电除尘颗粒物120~22010~3088.2
    SO2240~36060~16063.3
    NOx2 200~2 600280~42085.4
    320重油干法调质+高温电除尘+SCR脱硝+SDA脱硫+布袋除尘器颗粒物280~4006~1596.9
    SO2850~1 05040~8093.7
    NOx2 250~2 550120~34090.4
    下载: 导出CSV
  • [1] 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2015.
    [2] 张志刚, 王东歌. 玻璃熔窑烟气污染物深度减排技术研究与工程化应用[J]. 建材世界, 2017, 38(6): 96-101.
    [3] 汪庆卫, 罗理达, 刘津, 等. 不同燃料玻璃熔窑中SO2和NOx的来源及排放的相关计算[J]. 玻璃与搪瓷, 2017, 45(5): 6-11.
    [4] ZHENG C H, SHEN Z Y, YAN P, et al. Particle removal enhancement in a high-temperature electrostatic precipitator for glass furnace[J]. Powder Technology, 2017, 319: 154-162. doi: 10.1016/j.powtec.2017.06.017
    [5] 金玉健. 影响燃用石油焦玻璃熔窑烟气治理设施稳定运行的因素分析[J]. 节能与环保, 2018(8): 63-65. doi: 10.3969/j.issn.1009-539X.2018.08.023
    [6] 赵卫凤, 王洪华, 倪爽英, 等. 平板玻璃烟气污染物排放特性及治理技术现状[J]. 环境科学与技术, 2017, 40(S2): 107-111.
    [7] 苏云, 邵萍, 眭国荣, 等. 玻璃熔窑烟气脱硝技术探讨[J]. 环境工程, 2012, 30(4): 73-75.
    [8] 张鑫, 李炳炜, 徐杰, 等. 玻璃熔窑烟气高效选择性还原脱硝(HSR)技术的应用[J]. 玻璃与搪瓷, 2017, 45(6): 32-37.
    [9] 苏毅. 浅谈全氧燃烧玻璃熔窑的设计[J]. 建材世界, 2017, 38(4): 36-39.
    [10] 唐志雄, 岑超平, 陈雄波, 等. 平板玻璃工业窑炉烟气中低温SCR脱硝中试研究[J]. 环境工程学报, 2015, 9(2): 817-822. doi: 10.12030/j.cjee.20150251
    [11] 李春雨. 我国玻璃、水泥炉窑脱硝技术及应用现状研究[J]. 环境工程, 2014, 32(4): 55-58.
    [12] 张明慧, 马强, 徐超群, 等. 臭氧氧化结合湿法喷淋对玻璃窑炉烟气同时脱硫脱硝实验研究[J]. 燃料化学学报, 2015, 43(1): 88-93. doi: 10.3969/j.issn.0253-2409.2015.01.014
    [13] 朱法华, 孙尊强, 申智勇. 超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J]. 中国电力, 2019, 52(8): 1-7.
    [14] 汤志刚, 贺志敏, EBRAHIM, et al. 焦炉烟道气双氨法一体化脱硫脱硝:从实验室到工业实验[J]. 化工学报, 2017, 68(2): 496-508.
    [15] 耿梓文. 燃煤电厂烟气脱氯实现脱硫废水零排放中试试验研究[D]. 杭州: 浙江大学, 2018.
    [16] CHOWDHURY A, ADAK M K, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359. doi: 10.1016/j.jhydrol.2019.04.033
    [17] 徐俊, 王东歌. 玻璃熔窑烟气深度减排技术对策研究[J]. 环境科技, 2017, 30(4): 42-45. doi: 10.3969/j.issn.1674-4829.2017.04.009
    [18] 官建敏, 李徐, 汪远, 等. 失活商业SCR催化剂在线维护技术[J]. 环境工程学报, 2019, 13(7): 1678-1686. doi: 10.12030/j.cjee.201811085
    [19] DU X S, YANG G P, CHEN Y R, et al. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst[J]. Applied Surface Science, 2017, 392: 162-168. doi: 10.1016/j.apsusc.2016.09.036
    [20] GUO Y, ZHANG J, ZHAO Y, et al. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J]. Fuel, 2017, 203: 557-569. doi: 10.1016/j.fuel.2017.05.008
    [21] WANG G, MA Z Z, DENG J G, et al. Characteristics of particulate matter from four coal-fired power plantswith low-low temperature electrostatic precipitator in China[J]. Science of the Total Environment, 2019, 662: 455-461. doi: 10.1016/j.scitotenv.2019.01.080
    [22] YAN Y B, LI Q, SUN X Y, et al. Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(Ⅱ) and Cd(Ⅱ) from wastewater[J]. Journal of Colloid and Interface Science, 2015, 457: 86-95. doi: 10.1016/j.jcis.2015.06.035
  • 加载中
图( 5) 表( 4)
计量
  • 文章访问数:  4455
  • HTML全文浏览数:  4455
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-30
  • 录用日期:  2019-12-02
  • 刊出日期:  2020-10-10
顾镇, 张志刚, 王彬, 王东歌, 王俊. 平板玻璃行业烟气污染物治理工艺及减排效果[J]. 环境工程学报, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
引用本文: 顾镇, 张志刚, 王彬, 王东歌, 王俊. 平板玻璃行业烟气污染物治理工艺及减排效果[J]. 环境工程学报, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
GU Zhen, ZHANG Zhigang, WANG Bin, WANG Dongge, WANG Jun. Treatment process and emission reduction effect of flue gas pollutants in flat glass industry[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153
Citation: GU Zhen, ZHANG Zhigang, WANG Bin, WANG Dongge, WANG Jun. Treatment process and emission reduction effect of flue gas pollutants in flat glass industry[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2796-2803. doi: 10.12030/j.cjee.201910153

平板玻璃行业烟气污染物治理工艺及减排效果

    通讯作者: 张志刚(1975—),男,学士,教授级高级工程师。研究方向:工业烟气减排。E-mail:zzgzzr@sina.com
    作者简介: 顾镇(1995—),男,硕士研究生。研究方向:大气污染控制。E-mail:812713376@qq.com
  • 1. 合肥工业大学资源与环境工程学院,合肥 230009
  • 2. 中建材环保研究院(江苏)有限公司,盐城 224051
基金项目:
国家重点研发计划(2017YFC0210805)

摘要: 针对平板玻璃行业烟气排放治理问题,采用定电位电解法、离子色谱法等对不同燃料的玻璃熔窑烟气污染物浓度进行测定,并使用X射线荧光光谱仪(XRF)和激光粒度分析仪(LPSA)对颗粒物特性进行表征,结合工程应用对污染物的治理技术进行研究。结果表明,平板玻璃行业烟气NOx浓度普遍高于2 000 mg·m−3,燃用重油及石油焦粉的烟气中SO2的浓度明显高于天然气和煤制气,烟气颗粒物中普遍含有易导致脱硝催化剂中毒的Na、K等碱金属元素,且粒径主要集中在1~3 μm及20~60 μm。进一步分析表明,燃料是导致平板玻璃行业烟气污染物浓度差异的重要因素,治理工艺应根据燃料种类进行选择。结合工程实例,对燃用重油的玻璃熔窑烟气提出符合现行排放标准要求的治理工艺,为平板玻璃行业烟气深度减排提供技术参考。

English Abstract

  • 平板玻璃作为重要的工业原材料,生产过程能耗高、污染严重。2015年统计数据[1]显示,平板玻璃行业烟气颗粒物、SO2、NOx年排放量为 2.8×104、1.31×105 和 2.67×105 t,分别占全国工业年排放总量的0.2%、0.7%和1.4%。相比于我国工业总产值,平板玻璃行业产值占比低,污染物排放占比低,但由于产品不宜长途运输,导致平板玻璃生产企业大量分布于人口密集、需求量较大的地区,仅京津冀及周边城市就集中了全国近30%的产能[2]。因此,针对平板玻璃行业烟气污染物的深度减排研究显得尤为重要。

    目前,平板玻璃行业使用的燃料主要有重油、天然气、石油焦粉和煤制气,生产原料随产品要求复杂多变。燃料种类的多样性及生产原料的复杂性导致玻璃熔窑烟气特性差异明显。汪庆卫等[3]对玻璃熔窑烟气排放的SO2和NOx进行理论计算,得出不同燃烧过程对污染物浓度的影响。ZHENG等[4]研究了90~390 ℃玻璃熔窑的飞灰特性及电除尘性能,发现电除尘效率随烟气温度的升高而降低。金玉健[5]对燃用石油焦粉的玻璃熔窑烟气进行研究,发现造成烟气治理设施堵塞和腐蚀的主要原因是特殊粉尘及灰硫比等。赵卫凤等[6]对平板玻璃熔窑烟气污染物特性及治理技术进行了探讨,并建议开展玻璃熔窑烟气治理技术的深度研发。综上所述,目前针对玻璃行业烟气的研究较多,但多为烟气污染物的基础理论研究,有关治理工艺优化及工程实践的研究较少。本研究对比分析了使用不同燃料的烟气污染物的排放特性,尤其对烟气颗粒物进行了深入研究。基于研究结果,对现有的烟气治理工艺提出了优化方案,结合燃用重油的平板玻璃熔窑烟气治理工程案例,对相应工艺进行技术调研,构建了烟气污染物的深度减排技术路线,以期为平板玻璃行业烟气治理提供参考。

  • 实验所用试剂:NaOH、KOH(分析纯,上海埃彼化学试剂有限公司),NaF、AgNO3(分析纯,无锡展望化工试剂有限公司),溴甲酚绿、铬酸钾、酚酞(分析纯,上海展云化工有限公司),配制溶液所用超纯水由上海和泰仪器有限公司的Master Touch-S30型超纯水机制备。实验主要仪器设备与检测方法如表1所示。

  • 依据《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)的规范要求,从安徽省、山东省等地分别燃用重油、天然气、石油焦粉和煤制气燃料的4座平板玻璃熔窑进行烟气采样,熔窑均采用空气助燃,熔量分别为320、600、500、600 t·d−1,采样点为高温段余热锅炉出口,其具体位置见图1

    在采样过程中,使用烟气测试仪对NOx、SO2浓度进行在线检测并记录;硫酸雾浓度的测定采用离子色谱法,根据分离保留时间定性,峰面积定量;颗粒物浓度通过采样前后滤筒质量差及采样体积进行确定;HCl浓度的测定采用硝酸银容量法,利用硝酸银对吸收液中的Cl进行滴定;氟化物的测定采用离子选择电极法,其电位与氟离子活度的对数成线性关系。

    利用XRF对颗粒物化学组成进行分析,检测前对样品进行研磨过筛(200目)及压片处理,采用定量分析模式;颗粒物粒径分布特性通过LPSA进行分析,分散剂为过滤纯水,采用多重窄峰分析模式。

  • 经仪器检测与实验测定,燃用不同种类燃料的平板玻璃熔窑烟气各污染物浓度情况如图2所示。

    图2(a)中,4座不同燃料玻璃熔窑烟气的NOx浓度均高于2 000 mg·m−3,燃用天然气更容易促进烟气NOx的生成。这主要因其较高的热值会在窑内燃烧产生更高的温度。有研究[7]发现,当温度大于1 300 ℃时,每增加100 ℃,热力型NOx生成速率增大6~7倍。由此可以看出,玻璃熔窑烟气NOx主要是助燃空气中N2与O2高温反应生成的热力型NOx,其余少量来自燃料的燃烧氧化及原料中硝酸盐物质的分解。

    目前,玻璃熔窑烟气NOx的脱除主要围绕窑内脱硝、燃料脱氮、烟气脱硝3个方面[8],主要技术包括纯氧燃烧工艺以及一系列烟气脱硝技术[9-12]。纯氧燃烧采用高纯氧助燃,解决了热力型NOx的生成问题,但窑体造价昂贵,应用推广受到限制。综合经济与技术指标,选择性催化还原(selective catalytic reduction, SCR)技术在众多玻璃熔窑烟气脱硝技术中优势明显。

    图2(b)中,燃用重油和石油焦粉时,烟气SO2浓度分别为1 520 mg·m−3和3 560 mg·m−3,相应地,天然气和煤制气则较低,这主要与燃料含硫量及澄清剂芒硝用量有关。在玻璃生产中,燃料燃烧生成SO2,与原子态氧(O)结合转化为SO3,SO3与烟气中水分结合生成硫酸雾。此外,不同燃料情况下的硫酸雾与SO2浓度并不完全对应。据报道[13],SO3生成率随燃料含硫量的增加而增加,但玻璃熔窑烟气硫酸雾的产生还受湿度、过程转化等多因素影响,易与NH3反应生成(NH4)2SO4物质。

    在脱硫技术方面,我国早期主要依靠从国外引进技术,并在应用过程中结合实际情况不断优化。目前这些技术主要包括干法、湿法及半干法3大类[14]。其中,湿法脱硫效率高,但系统复杂、设备管道易腐蚀、脱硫废水处理难度大[15];干法脱硫工艺简单、占地面积小、脱硫效率低;半干法脱硫运行成本低、脱硫效率高、烟气适应性强,具有良好的应用前景,现已成为玻璃行业烟气脱硫技术的主要研究方向。

    图2(c)中,玻璃熔窑烟气颗粒物浓度受燃料种类影响明显,重油及石油焦粉燃料烧结物质多,导致烟气颗粒物浓度均高于300 mg·m−3,而天然气与煤制气燃烧产生的烟气颗粒物浓度则相对较低。另外,原料中的部分微细碎渣会随热风进入烟气,极少量熔融态原料受火焰吹脱也会成为烟气颗粒物。

    烟气颗粒物的脱除技术主要包括机械除尘、电除尘、湿法除尘和过滤除尘。机械除尘主要依靠重力、离心力等,将颗粒物从气流中去除;湿法除尘同湿法脱硫,易产生废水二次污染。颗粒物作为烟气首要污染物,其末端治理一般采用过滤式除尘,效率可达99.9%以上。

    本研究对烟气中HCl及氟化物2种非常规污染物进行了分析。在图2(d)中,天然气熔窑烟气HCl浓度达26 mg·m−3,重油熔窑则只有11 mg·m−3。相关研究[16]表明,玻璃熔窑烟气HCl与氟化物受原料的种类及配比影响较大,而与燃料基本无关,由此推测烟气HCl及氟化物主要来自生产原料的分解。在脱除技术方面,脱硫剂在脱硫过程中会对HCl、氟化物等物质产生协同去除效应。

  • 表2所示,玻璃熔窑烟气颗粒物中主要含有S、Na、K等易挥发性元素,这些元素富集在颗粒物表面,易发生反应,生成Na2SO4、K2SO4等物质,使颗粒物具有较高的黏性和腐蚀性[17]

    由于Na、K等碱金属元素的存在,颗粒物若不经处理随烟气直接进入SCR反应器,会与催化剂本体发生反应,导致催化剂中毒,降低脱硝效率[18-19]

    图3所示,玻璃熔窑烟气颗粒物粒径主要集中在0.06~0.08、1~3 和20~60 μm,但0.06~0.08 μm峰值较弱。0.06~0.08 μm 主要是颗粒物中气相物质凝聚形成的气溶胶;1~3 μm 的细颗粒物主要是燃料烧结产物及吹脱的熔融态原料;20~60 μm 的粗颗粒物主要是由微细的原料碎渣随热风进入烟气形成的。

    颗粒物的粒径分布会影响其团聚性能[20],导致催化剂堵塞。不仅如此,当粒径较小时,内部孔隙率较高,荷电性能弱,电除尘对其脱除效率也会大大降低[21]

  • 平板玻璃行业烟气蕴藏丰富的余热资源。在治理过程中,可将脱硝工艺与余热利用相耦合,通过余热锅炉(高温段),将高温烟气利用至催化剂最佳活性温度,提高脱硝效率,并将脱硝出口回接余热锅炉(低温段),实现烟气余热的深度利用,促进平板玻璃行业烟气节能减排。

    鉴于玻璃熔窑烟气颗粒物表面黏性和腐蚀性以及Na、K等碱金属元素的存在,脱硝前须对其进行处理,且处理工艺应依据燃料种类进行选择,不同燃料烟气SCR前处理优选工艺见表3。在脱硝催化剂目前以蜂窝式为主的前提下,其规格建议选用18孔或22孔为主,即确保较大的孔隙率,避免催化剂堵塞,并设定合理的吹扫压力及频率。

    湿法脱硫易带来废水排放、烟气消白等问题,治理难度相当大。因此,选择玻璃熔窑烟气脱硫(flue gas desulfurization, FGD)工艺时推荐以半干法为主,喷雾干燥吸收法(spray drying absorption, SDA)、新型一体化脱硫(new integrated desulfurization, NID)和循环流化床(circulating fluidized bed, CFB)工艺在平板玻璃行业烟气治理中均有应用。结合工程实践经验,对不同燃料的玻璃熔窑烟气给出FGD优选工艺(表3)。

  • 以某320 t·d−1玻璃熔窑烟气深度治理示范项目为例,该熔窑燃用重油,采用治理技术路线如图4所示,工艺选用Ca(OH)2作为脱硫剂,氨水浓度为20%。

    玻璃熔窑烟气(500~550 ℃)进入余热锅炉(高温段)进行高品位热量回收,经干法调质系统后,进入高温电除尘(380~390 ℃);预除尘处理后,进入SCR脱硝反应器(360~380 ℃),在氨水与催化剂作用下完成烟气脱硝;再回接余热锅炉(低温段),进行低品位热量回收,出口烟气(180~200 ℃)进入R-SDA脱硫反应塔,将烟气中的SO2、SO3、HCl、氟化物等物质协同去除;最后设置布袋除尘对烟气进行末端处理,净烟气经风机引入烟囱实现高空排放。

  • 某320 t·d−1平板玻璃厂烟气指标如下:烟气流量为80 000 m3·h−1,含水量约为10%,含氧量约为8%,NOx≥2 000 mg·m−3,SO2≥1 500 mg·m−3,颗粒物≥400 mg·m−3,以上数据均为标态。

    采用图4的技术路线对烟气污染物进行治理后,烟气污染物排放浓度及政策允许排放标准见图5。该项目烟气NOx、SO2以及颗粒物排放浓度完全符合排放标准并远低于允许排放限值,且各项排放指标稳定。由于玻璃熔窑生产过程存在火焰换向过程,且换火期间燃料停止燃烧,烟气含氧量增加,导致各污染物排放浓度呈现周期性变化。

    表4为玻璃行业不同烟气治理工艺运行效果的调研结果。由此可见,本研究的技术路线相比于其他工艺,在技术指标上优势明显:各项污染物脱除效率均可达90%以上。不仅如此,该工艺也具有良好的经济效益:建设投资少,运行过程无须考虑废水二次污染治理,余热利用系统可富余供给设备自身用电。同时,相关学者[22]对干法、半干法脱硫副产物的利用也开始进行研究,可进一步降低该工艺的运行成本。

  • 1)玻璃熔窑烟气中NOx主要为热力型,排放浓度普遍高于2 000 mg·m−3,并随熔窑温度的升高而升高;SO2浓度主要受燃料含硫量的影响,且硫酸雾与SO2浓度并不完全对应;燃料的烧结产物是造成烟气颗粒物浓度变化的重要原因;HCl与氟化物等非常规污染物主要来自玻璃原料的高温分解作用,燃料对其影响很小。

    2)玻璃熔窑烟气颗粒物具有较高的黏性,易造成催化剂的堵塞,同时Na、K等碱金属成分还会造成催化剂中毒失活。因此,SCR脱硝前必须进行烟气预处理;此外,烟气颗粒物粒径分布主要集中在1~3 μm及20~60 μm,为除尘工艺选择及参数设置提供基础。

    3)结合烟气特性研究,提出平板玻璃熔窑烟气治理工艺优化建议:SCR脱硝前设置高温电除尘,且电除尘前端应根据燃料种类选择配置干法调质或干法脱硫系统;SCR脱硝催化剂选用18孔或22孔规格为主;烟气脱硫以半干法为主,具体依据燃料种类区别选用SDA、NID或CFB工艺。同时某320 t·d−1燃用重油的玻璃熔窑烟气治理示范项目工程效果表明,采用熔窑烟气→余热锅炉(高温段)→干法调质→高温电除尘→SCR脱硝→余热锅炉(低温段)→R-SDA半干法脱硫→布袋除尘→烟囱的工艺路线,完全能够实现玻璃熔窑烟气的稳定排放,且排放浓度远低于现行允许排放浓度限值。

参考文献 (22)

返回顶部

目录

/

返回文章
返回