[1] |
国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2015.
|
[2] |
张志刚, 王东歌. 玻璃熔窑烟气污染物深度减排技术研究与工程化应用[J]. 建材世界, 2017, 38(6): 96-101.
|
[3] |
汪庆卫, 罗理达, 刘津, 等. 不同燃料玻璃熔窑中SO2和NOx的来源及排放的相关计算[J]. 玻璃与搪瓷, 2017, 45(5): 6-11.
|
[4] |
ZHENG C H, SHEN Z Y, YAN P, et al. Particle removal enhancement in a high-temperature electrostatic precipitator for glass furnace[J]. Powder Technology, 2017, 319: 154-162. doi: 10.1016/j.powtec.2017.06.017
|
[5] |
金玉健. 影响燃用石油焦玻璃熔窑烟气治理设施稳定运行的因素分析[J]. 节能与环保, 2018(8): 63-65. doi: 10.3969/j.issn.1009-539X.2018.08.023
|
[6] |
赵卫凤, 王洪华, 倪爽英, 等. 平板玻璃烟气污染物排放特性及治理技术现状[J]. 环境科学与技术, 2017, 40(S2): 107-111.
|
[7] |
苏云, 邵萍, 眭国荣, 等. 玻璃熔窑烟气脱硝技术探讨[J]. 环境工程, 2012, 30(4): 73-75.
|
[8] |
张鑫, 李炳炜, 徐杰, 等. 玻璃熔窑烟气高效选择性还原脱硝(HSR)技术的应用[J]. 玻璃与搪瓷, 2017, 45(6): 32-37.
|
[9] |
苏毅. 浅谈全氧燃烧玻璃熔窑的设计[J]. 建材世界, 2017, 38(4): 36-39.
|
[10] |
唐志雄, 岑超平, 陈雄波, 等. 平板玻璃工业窑炉烟气中低温SCR脱硝中试研究[J]. 环境工程学报, 2015, 9(2): 817-822. doi: 10.12030/j.cjee.20150251
|
[11] |
李春雨. 我国玻璃、水泥炉窑脱硝技术及应用现状研究[J]. 环境工程, 2014, 32(4): 55-58.
|
[12] |
张明慧, 马强, 徐超群, 等. 臭氧氧化结合湿法喷淋对玻璃窑炉烟气同时脱硫脱硝实验研究[J]. 燃料化学学报, 2015, 43(1): 88-93. doi: 10.3969/j.issn.0253-2409.2015.01.014
|
[13] |
朱法华, 孙尊强, 申智勇. 超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J]. 中国电力, 2019, 52(8): 1-7.
|
[14] |
汤志刚, 贺志敏, EBRAHIM, et al. 焦炉烟道气双氨法一体化脱硫脱硝:从实验室到工业实验[J]. 化工学报, 2017, 68(2): 496-508.
|
[15] |
耿梓文. 燃煤电厂烟气脱氯实现脱硫废水零排放中试试验研究[D]. 杭州: 浙江大学, 2018.
|
[16] |
CHOWDHURY A, ADAK M K, MUKHERJEE A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359. doi: 10.1016/j.jhydrol.2019.04.033
|
[17] |
徐俊, 王东歌. 玻璃熔窑烟气深度减排技术对策研究[J]. 环境科技, 2017, 30(4): 42-45. doi: 10.3969/j.issn.1674-4829.2017.04.009
|
[18] |
官建敏, 李徐, 汪远, 等. 失活商业SCR催化剂在线维护技术[J]. 环境工程学报, 2019, 13(7): 1678-1686. doi: 10.12030/j.cjee.201811085
|
[19] |
DU X S, YANG G P, CHEN Y R, et al. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst[J]. Applied Surface Science, 2017, 392: 162-168. doi: 10.1016/j.apsusc.2016.09.036
|
[20] |
GUO Y, ZHANG J, ZHAO Y, et al. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J]. Fuel, 2017, 203: 557-569. doi: 10.1016/j.fuel.2017.05.008
|
[21] |
WANG G, MA Z Z, DENG J G, et al. Characteristics of particulate matter from four coal-fired power plantswith low-low temperature electrostatic precipitator in China[J]. Science of the Total Environment, 2019, 662: 455-461. doi: 10.1016/j.scitotenv.2019.01.080
|
[22] |
YAN Y B, LI Q, SUN X Y, et al. Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(Ⅱ) and Cd(Ⅱ) from wastewater[J]. Journal of Colloid and Interface Science, 2015, 457: 86-95. doi: 10.1016/j.jcis.2015.06.035
|