Processing math: 100%

芬顿与氧化钙联合处理填埋库污泥的力学特性

林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
引用本文: 林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
Citation: LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027

芬顿与氧化钙联合处理填埋库污泥的力学特性

    作者简介: 林珊伊(1995—),女,硕士研究生。研究方向:污泥处理。E-mail:lsyer031@shu.edu.cn
    通讯作者: 孙德安(1962—),男,博士,教授。研究方向:土力学。E-mail:sundean@shu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(41772303)
  • 中图分类号: X705

Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    Corresponding author: SUN De'an, sundean@shu.edu.cn
  • 摘要: 面对城市生活污泥填埋库容趋于饱和的现状,亟需研究开发城市生活污泥的减量化及资源化技术。以填埋库污泥和新鲜污泥为研究对象,进行岩土工程特性实验,发现填埋库污泥有机质含量及含水率远低于新鲜污泥。通过固结实验和直剪实验,分别对比、分析了未加药剂的填埋库污泥和药剂调质填埋库污泥的固结系数、渗透系数和抗剪强度变化规律。结果表明:填埋库污泥在pH为4时,芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比为Fe2+=8%、H2O2=12%;当氧化钙投加量增加时,调质污泥的压缩指数减小,抗剪强度略微增大;考虑到联合处理后污泥的资源化利用、强碱性对环境的影响和处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量,且效果优于常用的氯化铁药剂调制污泥。经芬顿与氧化钙联合处理的填埋库污泥抗剪强度满足填埋库要求,能够实现减容减量,对填埋库污泥后续资源化利用具有一定的指导意义。
  • 2021年,我国城市污水处理厂污水处理能力为2.1×109 m3·d−1,污水处理率达到97.89%。污水、污泥处理过程中产生并逸散的恶臭气体、挥发性有机物等气态污染物,影响环境空气质量以及污水处理厂内员工、周边居民的身体健康。2002年我国制定了《城镇污水处理厂污染物排放标准》(GB 18918-2002),严格限制硫化氢、氨、甲烷等气态污染物的排放。有研究[1-2]表明,城市污水处理厂的进水区(进水泵站、格栅间)和污泥处理区(污泥浓缩池、污泥脱水机房)是恶臭气体和挥发性有机物的主要逸散源。硫化氢和氨是常见的恶臭物质[3-4],。排放的VOCs包括烷烃、烯烃、芳香烃、卤代烃、含氧有机物、含氮有机物和含硫有机物等80余种[5-6]。以往的研究主要关注恶臭物质中的硫化氢和氨,较少涉及二硫化碳等有机硫化物以及磷化氢。随着我国污水的排放标准的逐步提高,以及人们对环境质量的要求也显著提高,使得城市污水处理厂排放的空气污染物受到越来越多的关注。A2O是一种典型的污水处理工艺,可常用于二级污水处理或三级污水处理以及中水回用,具有良好的脱氮除磷效果,在我国应用广泛。本研究在北方某座采用A2O工艺的城市污水处理厂设置采样点,监测主要处理单元空气中的硫化氢、氨、二硫化碳、磷化氢等恶臭物质,研究了恶臭随季节的变化特征,明确了其排放源及产生原因,评估了恶臭物质的嗅味影响和健康风险,以期为城市污水处理厂恶臭物质的有效削减和控制提供科学依据。

    本研究在京津冀地区某一污水处理厂定期采集样品,研究主要污水处理单元恶臭物质逸散的特征。该污水处理厂采用倒置A2O污水处理工艺,处理规模为1.0×105 m3·d−1,服务区域55.8 km2。污水经过粗格栅、细格栅后经水泵提升进入曝气沉砂池,随后进入生化池,处理后的水全部进入再生水厂深度处理。剩余污泥经离心式脱水机脱水后外运。

    图1所示,在污水处理厂主要处理单元共设置了8个臭味气体的采样点,包括进水(S1)、粗/中格栅(S2)、细格栅(S3)、曝气池进水(S4)、曝气池1(S5)、曝气池2(S6)、脱水间(S7)以及出水(S8)。所有采样点设置在距离地面1.5 m处。采样时间3—6月、11—12月,每月采集样品6~8次。

    图 1  采样点分布图
    Figure 1.  Distribution of sample points

    1)恶臭物质采集及分析。恶臭物质硫化氢、氨、二硫化碳和磷化氢的监测采用在线气体检测仪(PTM-600,中国)。监测时段为 8:30—10:30 am,每个采样点连续监测20 min,获得的恶臭物质的浓度为连续监测数据的平均值。同时采集对应时间和对应工艺段的污水、污泥样品带回实验室分析。

    2)水质及环境条件分析。污水的化学需氧量(COD)和无机离子分别采用多功能消解仪(ET3150B)/分光光度计(DR2800,HACH)和离子色谱仪(DIONEX ICS1000,美国)测定。环境温度和相对湿度采用手持式智能温湿度记录仪(179-TH,USA)监测,风速仪(DeltaOHM HD2303.0,Italy)记录风速。空气温度、相对湿度以及风速分别为6.7~29.1 ℃,23.8%~74.1% 以及0~1.7 m·s−1

    3)计算方法。典范对应分析(canonical correspondence analysis, CCA)方法解析逸散的恶臭气体与环境因素之间的相关性。通过计算气味活性值(odor activity value, OAV),即某种物质的化学浓度与气味检测阈值的比值,确定和分析检出的恶臭物质的嗅觉效应及其气味贡献百分比[7-8]。通过美国环保署公布的空气污染物风险评估方法计算吸入性慢性非致癌风险(hazard quotient,HQ),评估污水厂操作工人恶臭物质的暴露风险[9-10]

    图2所示,监测结果表明,恶臭物质在污水各处理单元的空气中均有检出,逸散水平有明显差异。进水阶段包括进水渠、中格栅、细格栅、曝气池进水等单元。在进水渠空气中检出的氨、硫化氢、二硫化碳和磷化氢的质量浓度分别为0~0.15、0.06~0.33、23.79~99.93和0.05~0.32 mg·m−3。中格栅间内,氨、硫化氢、二硫化碳和磷化氢的质量浓度平均值分别为0.56、1.62、20.88和1.65 mg·m−3。细格栅间空气中氨、硫化氢、二硫化碳和磷化氢的质量浓度分别为0~0.27、0~0.37、0.51~94.33和0~0.33 mg·m−3,平均值分别为0.11、0.16、38.82和0.13 mg·m−3。曝气池进水单元分别有0~0.12 mg·m−3氨、0.33~9.28 mg·m−3硫化氢、0~151.26 mg·m−3二硫化碳和0~1.29 mg·m−3的磷化氢被检出。污水生化处理阶段的采样点包括曝气池1和曝气池2。曝气池1空气中的氨、硫化氢和二硫化碳的质量浓度分别为0~0.11、0~0.14和0~7.14 mg·m−3,平均值分别为0.03、0.02和1.02 mg·m−3。曝气池2空气中只有少量的硫化氢检出,质量浓度为0~0.12 mg·m−3。污泥脱水间空气中氨、硫化氢和二硫化碳等气味物质均有检出,平均浓度分别为1.07、0.03和4.39 mg·m−3

    图 2  污水处理厂恶臭物质的逸散
    Figure 2.  The escape of odorous substances in wastewater treatment plant

    污水处理厂主要处理单元空气中的恶臭气体主要在进水区,平均质量浓度为0.19 mg·m−3(氨),1.07 mg·m−3(硫化氢),44.32 mg·m−3(二硫化碳)和0.58 mg·m−3(磷化氢),而在污水或污泥处理过程产生的较少。以往的恶臭排放特征的调查和研究的结果表明,城市污水处理厂臭味气体的产生源主要是进水池、格栅间、沉砂池、初沉池及污泥处理系统的储泥池、脱水机房等工艺段或构筑物[1, 11-12]

    污水处理厂预处理单元中的恶臭气体是污水在排水管网中长距离输送时产生的。污水在排水管网中长时间停留,溶解氧逐渐消耗,形成缺氧或厌氧环境。此时,厌氧微生物大量繁殖,污水中的含氮、含硫等物质会转化为氨、硫化氢等恶臭物质。有机物在污水管网中的生物转化研究[13-14]发现,从表面到沉积物中1~2 mm深度的沉积层中,硫化氢的质量浓度迅速增加,表明有硫化氢大量产生,同时,该区域的溶解氧值接近0,处于厌氧状态。管道生物膜中生长的硫酸盐还原菌,以乳酸或丙酮酸等有机物作为电子供体,在厌氧状态下,把硫酸盐、亚硫酸盐、硫代硫酸盐等还原为硫化氢。在无氧条件下,污水中的蛋白质,尿素、氨基酸等这些含氮有机物在微生物的作用下转化成氨。含硫、含磷有机物转化为硫醇、硫醚、二硫化碳(C2S)和磷化氢(PH3)等恶臭物质。当污水流经进水泵站和格栅时,排水管网中产生的恶臭气体大量逸出,形成该工艺段的恶臭污染。此外,污水处理厂格栅截留的漂浮物中含有较多的有机物,格栅渣的堆积也会导致有机物的厌氧发酵产生恶臭物质。另外,格栅间是相对密闭的空间,空气流动较少,恶臭物质积聚在格栅间内,导致格栅间空气中的恶臭浓度明显高于其他处理单元。剩余污泥在浓缩、堆置过程中,污泥内部形成厌氧环境,大量有机物进一步发酵、分解,产生NH3和挥发性有机硫等恶臭物质。污泥脱水过程中,恶臭物质从污泥中释放,使污泥处理单元也成为一个恶臭气体的排放源。污水生化处理阶段采用倒置A2O工艺,其中好氧段采用活性污泥法,微孔曝气方式提供生化反应所需的氧气,因此,曝气池内是好氧环境,水中的氨、硫化氢以及有机物等物质在该处理单元被氧化为硝酸盐、硫酸盐以及二氧化碳等物质。并且,生化池位于室外,空气流动加速气体扩散,使生化池的恶臭浓度值最低。

    在污水输送和处理过程中,恶臭气体的产生与排放与污水处理厂的进水水质以及环境条件(如光照强度、空气温度、相对湿度和风速)等因素密切相关[13]。本研究发现进水阶段的各处理单元是污水处理厂恶臭物质的主要逸散源,因此,进一步研究了进水水质(COD、氨氮、总氮、总磷、pH等),对各种检出的恶臭物质逸散水平的影响,并分析其相关性。结果表明,硫化氢的释放与进水中硫酸盐的含量呈显著正相关,这是由于输水管道内呈缺氧环境,污水中的硫酸盐在厌氧菌作用下被还原成硫化物,进一步产生硫化氢。以往的研究也报道了类似的结果[14-15]。此外,空气中氨的浓度与进水中的氨氮和总氮正相关(图3(a))。根据亨利定律,在一定温度下,当液面上的一种气体与溶液中所溶解的该气体达到平衡时,该气体在溶液中的浓度与其在液面上的平衡分压成正比[16]。污水从输送管道中流出进入进水渠、格栅等处理工艺段,气相的分压降低,气水平衡发生改变,水中的氨氮释放到周围空气中。因此,进水氨氮浓度高时,在进水区的空气中会有较多的氨检出。以往的研究表明,COD值高的污水,进入水厂后会释放较多的挥发性有机物。二硫化碳是挥发性有机硫化物,其逸散浓度与污水的COD呈现正相关(图3(b))。磷化氢微溶于水,其水溶液呈弱碱性。当pH增大,水溶液呈碱性时,有更多的磷化氢因溶解度降低而存在于气相中,因此呈现出其与pH呈正相关的现象。

    图 3  恶臭物质逸散的影响因素
    Figure 3.  Factors of malodorous substances emission

    恶臭物质的逸散浓度在各个季节也有明显差异。污水处理厂位于华北地区,每年的3~5月为春季、6~8月为夏季,9~11月为秋季,12~次年2月为冬季。恶臭物质的逸散受温度、相对湿度、风速等环境条件影响。相关性分析显示,氨、硫化氢、C2S 以及PH3的逸散浓度与风速均呈负相关关系,与环境温度、相对湿度呈正相关关系(图3(c))。在温度、相对湿度适宜且平均风速较小的夏季,污水处理各单元空气中恶臭物质的检出较多。

    恶臭物质影响分析包括恶臭物质对人体感官和健康两方面的影响分析。恶臭物质的嗅觉效应及贡献率通过计算其气味活性值(OAV)在总气味活性值中的占比进行评估,以识别主要的气味物质,计算结果如图4所示。主要的致臭物质为硫化氢,其在各工艺段的异味贡献率在78%~100%。在进水阶段的空气中,硫化氢和二硫化碳是引起异味的主要化合物,其异味贡献率分别为78.52%和21.46%。除硫化氢外,二硫化碳是污泥脱水间的主要异味物质,其异味贡献率为10.08%。

    图 4  恶臭物质的臭味贡献率
    Figure 4.  Odor contribution rate of malodorous substances

    氨、硫化氢、二硫化碳以及磷化氢均不是致癌物质,但是,长期接触会导致慢性致病。硫化氢是一种强烈的神经毒素,对粘膜有强烈刺激作用。低浓度的硫化氢对眼、呼吸系统及中枢神经都有影响。硫化氢是细胞色素氧化酶的强抑制剂,能与线粒体内膜呼吸链中的氧化型细胞色素氧化酶中的三价铁离子结合,而抑制电子传递和氧的利用,引起细胞内缺氧,造成细胞内窒息。通过吸入或皮肤接触进入人体后,氨在人体组织内遇水生成氨水,可以溶解组织蛋白质,与脂肪起皂化作用。氨水能破坏体内多种酶的活性,影响组织代谢。CS2是一种多系统亲和毒物,对神经、心血管、胃肠道等系统均有毒害作用。评价人体对这些恶臭物质的暴露风险,有助于相关部门明确污水厂气体污染物控制的优先次序、加强风险管理、保障现场操作人员和周边居民的身体健康。慢性致病风险值平均为0.33(氨),0.039(硫化氢),3.49(二硫化碳)和4.87(磷化氢)。其中,磷化氢的平均风险值最高。根据美国环保署的相关定义,对于慢性毒害,当HQ<1时,其风险可以忽略;当HQ>1时,长期暴露导致的危害应引起关注。磷化氢和二硫化碳是主要的具有潜在慢性致病风险的物质。

    污水处理厂的生化处理池和二沉池等污水处理池均为敞开式,未进行加盖密封处理。在这些工艺段逸散的恶臭气体,不仅在厂区弥漫,还会随风向周边扩散,影响污水厂厂外区域的空气质量。HYSPLIT模型是一种用于气溶胶和气体传输模拟的大气扩散模型,被广泛应用于空气质量监测、环境污染、气候变化等领域。利用HYSPLIT模型分别模拟了在曝气池进水(S4)、曝气池(S5和S6)以及出水(S8)等露天点位,硫化氢、二硫化碳和磷化氢的传输和扩散轨迹。图5反映了3种气体物质释放浓度最大时的模拟结果。硫化氢的扩散方向呈由南向北椭圆形分布(图5(a));10 min后,距离厂界为0.3 km时,其质量浓度降低至1.0×10−7 mg·m−3,影响范围为0.21 km2。二硫化碳和磷化氢的扩散趋势呈西北到东南椭圆形分布(图5(b)和图5(c)),10 min后,二硫化碳的质量浓度为1.1×10−6 mg·m−3 (距离厂界0.286 km),磷化氢的质量浓度为7.9×10−8 mg·m−3 (距离厂界0.25 km)。二硫化碳和磷化氢的影响范围分别为0.20 km2 和 0.14 km2。污水厂内产生的恶臭物质向周边随风扩散10 min之后,距离厂界300 m处空气中的硫化氢和二硫化碳的浓度均低于《恶臭污染物排放标准GB 14554-93》规定的周界恶臭污染物浓度限值。磷化氢慢性致病的风险值也降低至3.13×10−6(远低于1),属于可忽略的范围。

    图 5  气味化合物扩散模拟
    Figure 5.  Diffusion simulation of odor substances

    1)污水处理厂的进水区,尤其中格栅和曝气池进水单元是恶臭物质的主要逸散源,其逸散浓度与进水水质相关。周围空气中恶臭物质的浓度按污水处理单元的顺序依次降低。污水在该污水处理厂经过有效的处理,很少或几乎不释放恶臭物质。在温度、相对湿度适宜且平均风速较小的夏季,恶臭物质的检出相对较多。

    2)硫化氢和二硫化碳是臭味活性物质的主要贡献物质。二硫化碳和磷化氢是主要的具有潜在慢性致病风险的物质。由于空气稀释的作用,污水处理厂检出的恶臭物质对距离厂界300 m以外的区域,造成的影响极小。但对于长期在污水处理厂工作的职工,污染物的累积会增加暴露风险。因此,污水处理厂工作人员在上述污水处理工艺段操作时,需要做好相应的防护。

    3)未来,在污水处理过程中,建议采用适宜的方法如加盖密闭恶臭物质的主要逸散源、建立相应的处理设施等削减和控制污水处理产生的气体污染物。

  • 图 1  不同龄期污泥颗粒级配曲线

    Figure 1.  Particle size grading curves of sludge with different ages

    图 2  有机质含量与取样深度的关系

    Figure 2.  Relation between organic content and sampling depth

    图 3  含水率与取样深度的关系

    Figure 3.  Relation between water content and sampling depth

    图 4  不同配比芬顿试剂调质污泥的孔隙比-压力曲线

    Figure 4.  Void ratio-pressure curves of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 5  不同配比芬顿试剂调质污泥的渗透特性

    Figure 5.  Permeability characteristics of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 6  不同配比芬顿试剂调质污泥的抗剪强度

    Figure 6.  Shear strength of landfill sludge conditioned by Fenton’s reagent in different ratios

    图 7  芬顿与氧化钙联合处理填埋库污泥的压缩特性

    Figure 7.  Compression characteristics of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 8  芬顿与氧化钙联合处理下污泥的渗透特性

    Figure 8.  Permeability characteristics of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 9  芬顿与氧化钙联合处理下填埋库污泥的抗剪强度

    Figure 9.  Shear strength of landfill sludge conditioned by Fenton’s reagent with calcium oxide

    图 10  芬顿与氧化钙联合处理污泥与FeCl3调质污泥渗透特性对比

    Figure 10.  Permeability characteristics of landfill sludge conditioned by FeCl3 and Fenton’s reagent with calcium oxide

    表 1  填埋库污泥药剂调质方案

    Table 1.  Test schemes of landfill sludge with different reagents %

    实验编号Fe2+占比H2O2占比CaO占比
    F4H4440
    F4H6460
    F4H8480
    F8H4840
    F8H8880
    F8H128120
    F8H168160
    FHC58125
    FHC1081210
    FHC1581215
    实验编号Fe2+占比H2O2占比CaO占比
    F4H4440
    F4H6460
    F4H8480
    F8H4840
    F8H8880
    F8H128120
    F8H168160
    FHC58125
    FHC1081210
    FHC1581215
    下载: 导出CSV
  • [1] 吴雪峰, 李青青, 李小平. 城市污泥处理处置管理体系探讨[J]. 环境科学与技术, 2010, 33(4): 186-189. doi: 10.3969/j.issn.1003-6504.2010.04.044
    [2] 余杰, 田宁宁, 王凯军, 等. 中国城市污水处理厂污泥处理、处置问题探讨分析[J]. 环境工程学报, 2007, 1(1): 82-86. doi: 10.3969/j.issn.1673-9108.2007.01.021
    [3] 张华, 范建军, 赵由才. 基于填埋处置的污水厂脱水污泥土工性质研究[J]. 同济大学学报(自然科学版), 2008, 36(3): 361-365. doi: 10.3321/j.issn:0253-374X.2008.03.016
    [4] 李娟, 张盼月, 曾光明, 等. Fenton氧化破解剩余污泥中的胞外聚合物[J]. 环境科学, 2009, 30(2): 475-479. doi: 10.3321/j.issn:0250-3301.2009.02.027
    [5] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037
    [6] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
    [7] NEYENS E, BAEYENS J, WEEMAES M, et al. Pilot-scale peroxidation (H2O2) of sewage sludge[J]. Journal of Hazardous Materials, 2003, 98(1): 91-106.
    [8] TONY M A, ZHAO Y Q, FU J F, et al. Conditioning of aluminum-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability[J]. Chemosphere, 2008, 72(4): 673-677. doi: 10.1016/j.chemosphere.2008.03.032
    [9] 洪晨, 邢奕, 司艳晓, 等. 芬顿试剂氧化对污泥脱水性能的影响[J]. 环境科学研究, 2014, 27(6): 615-622.
    [10] SINGH T S, PANT K K. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials[J]. Journal of Hazardous Materials, 2005, 131(1): 29-36.
    [11] 孙政, 朱伟, 贺敏杰. 污水厂污泥固结特性研究[J]. 科学技术与工程, 2013, 13(11): 3146-3150. doi: 10.3969/j.issn.1671-1815.2013.11.048
    [12] 蒋建国, 杜伟, 殷闽, 等. 石灰稳定化污泥恶臭物质释放特征研究[J]. 中国环境科学, 2012, 32(9): 1620-1624. doi: 10.3969/j.issn.1000-6923.2012.09.012
    [13] 于文华, 濮文虹, 时亚飞, 等. 阳离子表面活性剂与石灰联合调理对污泥脱水性能的影响[J]. 环境化学, 2013, 32(9): 1785-1791. doi: 10.7524/j.issn.0254-6108.2013.09.027
    [14] 杨爱武, 胡垚. 城市污泥新型固化技术及其力学特性[J]. 岩土力学, 2019, 40(11): 1-10.
    [15] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 岩土工程勘察规范: GB 50021-2001[S]. 北京: 中国建筑工业出版社, 2001.
    [16] 国家质量技术监督局, 中华人民共和国建设部. 土工试验方法标准: GB/T 50123-1999[S]. 北京: 中国计划出版社, 1999.
    [17] 谭晓慧, 沈梦芬, 张强, 等. 用激光粒度仪进行粘土的颗粒分析[J]. 土木建筑与环境工程, 2011, 33(6): 96-100.
    [18] 孙德安, 许志良. 结构性软土渗透特性研究[J]. 水文地质工程地质, 2012, 39(1): 36-41.
    [19] CAMPBELL H W, RUSH R J, TEW R. Sludge dewatering design manual research report[R]. Burlington: Ontario Ministry of the Environment, 1978.
    [20] 武亚军, 唐欣, 崔春义, 等. 城市生活污泥真空固结特性试验研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 772-780. doi: 10.3969/j.issn.1001-0505.2018.04.026
    [21] 骆丽宁, 王丽娟, 杨敏, 等. 氧化-铁盐絮凝联合对调理改善污泥脱水性能的影响[J]. 环境工程学报, 2018, 12(2): 630-637. doi: 10.12030/j.cjee.201708105
    [22] 王现丽, 王世峰, 吴俊峰, 等. 光电Fenton技术处理污泥深度脱水液研究[J]. 环境科学, 2014, 35(1): 208-213.
    [23] 曾庆洋, 伍健东, 周兴求, 等. 石灰投加比对污泥低温干燥特性及冷凝液性质的影响[J]. 环境工程学报, 2017, 11(10): 5603-5608. doi: 10.12030/j.cjee.201611158
    [24] 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919.
    [25] 梁嘉林. 芬顿氧化联合氧化钙对五种市政污泥深度脱水性能影响的研究[D]. 广州: 广东工业大学, 2016.
    [26] 中华人民共和国住房和城乡建设部, 中华人民共和国国家发展和改革委员会. 城镇污水处理厂污泥处理处置技术指南(试行)[S]. 2011.
    [27] 冯瑞, 银奕, 李子富, 等. 添加低比例石灰调质的脱水污泥堆肥试验研究[J]. 中国环境科学, 2015, 35(5): 1442-1448. doi: 10.3969/j.issn.1000-6923.2015.05.022
    [28] WU Y J, LIN Z X, KONG G Q, et al. Treatment of municipal sludge by Fenton oxidation combined vacuum preloading[J]. Environmental Science and Pollution Research, 2018, 25(16): 15990-15997. doi: 10.1007/s11356-018-1736-5
    [29] 吴彦瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究[J]. 环境科学, 2010, 31(4): 996-1001.
  • 加载中
图( 10) 表( 1)
计量
  • 文章访问数:  5113
  • HTML全文浏览数:  5113
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-03-28
  • 刊出日期:  2020-10-10
林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
引用本文: 林珊伊, 孙德安, 朱明瑞, 武亚军. 芬顿与氧化钙联合处理填埋库污泥的力学特性[J]. 环境工程学报, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027
Citation: LIN Shanyi, SUN De'an, ZHU Mingrui, WU Yajun. Mechanical properties of landfill sludge conditioned by Fenton’s reagent with calcium oxide[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2813-2822. doi: 10.12030/j.cjee.201912027

芬顿与氧化钙联合处理填埋库污泥的力学特性

    通讯作者: 孙德安(1962—),男,博士,教授。研究方向:土力学。E-mail:sundean@shu.edu.cn
    作者简介: 林珊伊(1995—),女,硕士研究生。研究方向:污泥处理。E-mail:lsyer031@shu.edu.cn
  • 1. 上海大学土木工程系,上海 200444
  • 2. 上海城投污水处理有限公司,上海 200120
基金项目:
国家自然科学基金资助项目(41772303)

摘要: 面对城市生活污泥填埋库容趋于饱和的现状,亟需研究开发城市生活污泥的减量化及资源化技术。以填埋库污泥和新鲜污泥为研究对象,进行岩土工程特性实验,发现填埋库污泥有机质含量及含水率远低于新鲜污泥。通过固结实验和直剪实验,分别对比、分析了未加药剂的填埋库污泥和药剂调质填埋库污泥的固结系数、渗透系数和抗剪强度变化规律。结果表明:填埋库污泥在pH为4时,芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比为Fe2+=8%、H2O2=12%;当氧化钙投加量增加时,调质污泥的压缩指数减小,抗剪强度略微增大;考虑到联合处理后污泥的资源化利用、强碱性对环境的影响和处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量,且效果优于常用的氯化铁药剂调制污泥。经芬顿与氧化钙联合处理的填埋库污泥抗剪强度满足填埋库要求,能够实现减容减量,对填埋库污泥后续资源化利用具有一定的指导意义。

English Abstract

  • 随着新型城镇化建设的蓬勃发展,我国人口城镇化率呈高速增长趋势,伴随而来的是高体量污水及剩余污泥的大量产生。据统计[1],截至2016年9月底,我国污泥年产生量达4×107 t,并以每年10%的速度增长,预计2025—2050年间将突破6×108 t (以含水率80%计)。我国目前主要的污泥处置方式为土地填埋[2-3],面对体量逐年增长的污泥,各填埋库容量已趋近饱和。因此,亟需对填埋库污泥进行深度脱水处理,实现减容减量并提高污泥力学性质,为后续资源化利用打下基础。

    由于污泥中含有大量胞外聚合物(EPS),这种亲水基团会形成高度水化的带电絮凝基质,从而产生黏结力,使得污泥难以通过机械压滤方式真正实现固液分离[4-5]。深度脱水的实质是破坏污泥胞外聚合物的亲水结构,进而改变絮体凝胶状态及表面结构[6]。近年来,国内外学者尝试使用芬顿试剂氧化破解细胞,来改善污泥的脱水性能。NEYENS等[7]研究发现,当亚铁离子(Fe2+)及过氧化氢(H2O2)质量比大于1时,对污泥的作用机理以絮凝作用为主,反之以氧化破解作用为主。TONY等[8]使用响应面曲线法探究Fe2+、H2O2浓度及pH对污泥脱水特性的影响,结果表明,Fe2+与H2O2投加量分别为21 mg·g−1及105 mg·g−1时,毛细吸水时间(CST)降低48%。洪晨等[9]通过测试泥饼含水率及CST,研究了芬顿试剂对污泥脱水性能的影响,并通过液相色谱分析芬顿试剂对污泥大分子有机物氧化分解的程度。

    考虑到单一的药剂调质无法满足污泥后续资源化利用的需求,研究人员[10-11]尝试通过添加生石灰等固化剂进行探讨,发现污泥固化能够提高污泥强度、降低透水性,并且能够使重金属离子固化,从而减少环境污染,因此,污泥固化可作为资源化利用的预处理手段,而且已成为污泥处置的研究热点。蒋建国等[12]利用污泥与石灰高效混合器制备5%、10%、15%石灰添加量的稳定化污泥,发现在均匀混合条件下,污泥臭味强度明显降低。于文华等[13]研究了2种阳离子表面活性剂与石灰联合调理对剩余污泥脱水性能的影响,发现石灰投加量15 g∶100 g(干基)时,污泥比阻降低17.7%,明显改善了污泥的脱水性能。杨爱武等[14]对城市污泥进行生石灰消化处理,发现固化后污泥的重金属浸出毒性满足要求,且无侧限抗压强度随养护龄期的增加而增大。可见,大部分学者的研究对象为未经填埋的剩余活性污泥(即新鲜污泥),主要关注芬顿试剂对污泥脱水性能的改善以及固化剂对重金属离子的作用机理,而对填埋年限超过5 a的填埋库污泥力学特性研究较少。因此,本研究以上海某污水处理厂填埋库污泥为研究对象,与新鲜污泥进行对比,分析两者物理力学性质的差异。通过固结实验和直剪实验,以固结系数、渗透系数和抗剪强度为指标,探究填埋库污泥芬顿试剂(硫酸亚铁和过氧化氢)的最佳配比;在此基础上,联合氧化钙处理污泥,研究其压缩特性、渗透特性以及抗剪强度,并将实验结果与氯化铁药剂调质污泥进行对比,全面探讨芬顿与氧化钙联合处理填埋库污泥的力学特性。

  • 供试污泥为上海城市生活土覆盖填埋库污泥,库中污泥经絮凝剂聚丙烯酰胺(PAM)离心脱水后填埋且填埋期已达7 a;对比实验的污泥样品为取自同一污水处理厂并添加PAM离心脱水未经填埋的新鲜污泥。实验期间污泥样品存放于4 ℃恒温冷藏箱中。

  • 激光粒度仪(Mastersizer2000,英国马尔文仪器公司);二联中压式固结仪(GJZ,国电南京自动化股份有限公司);气动直剪仪(HM-2560A.3F,美国Humboldt公司);pH计(pHS-3C型,上海精密科学仪器有限公司)。

    实验所用试剂包括七水合硫酸亚铁(FeSO4·7H2O)、浓硫酸(H2SO4,98%)、氧化钙(CaO)、过氧化氢(H2O2, 30%),以上药剂均为分析纯(AR)。

  • 采用原位钻孔法[15]进行取样,共设置3个取样点,每个取样点均采集4个深度的污泥,采样点深度分别为0.5~1.0、2.0~3.0、4.0~5.0和5.0~6.3 m。其中,药剂调质所用污泥为取样污泥均匀搅拌所得。采用常规土工实验方法[16]测定填埋库污泥及新鲜污泥的基本性质。其中,颗粒分析实验采用激光粒度仪[17]测定。称取等量填埋库污泥,加入蒸馏水,调含水率为75%,以避免药剂调质过程中药剂分布不均而影响调质效果。利用浓硫酸将污泥的pH调至4,再依次加入占干基不同百分比的硫酸亚铁和过氧化氢,根据固结实验[16]测得的渗透系数和直剪实验[16]测得的抗剪强度,确定芬顿试剂最佳配比。其中,固结实验采用二联中压式固结仪,直剪实验采用气动直剪仪。根据固结实验结果,利用时间平方根法[16]计算固结系数Cv,再根据式(1)求得渗透系数k[18]

    式中:e1为前一级压力下的孔隙比;av为前一级压力与本级压力区段下的压缩系数,MPa−1γw为水的重度,kN·m−3

    确定芬顿试剂最佳配比后,采用该配比对填埋库污泥进行调质,并分别加入5%、10%及15%的氧化钙联合处理污泥,测定孔隙比、压缩指数、渗透系数及抗剪强度,具体药剂调质方案列于表1,药剂含量按占填埋库污泥干基的百分比计算。

  • 填埋库污泥与新鲜污泥的比重分别为1.85和1.56;液限分别为179%和422%;塑限分别为115%和125%;湿密度分别为1.12 g·cm−3和1.02 g·cm−3;pH分别为6.7和7.2。颗粒分析实验[16]结果见图1。由图1可知,填埋库污泥和新鲜污泥粒径大于0.075 mm的砂颗粒占比分别为14.2%和50.6%,小于0.002 mm粒径的胶体颗粒占比分别为6.6%和0.6%;且填埋库污泥平均粒径d50为0.017 mm,新鲜污泥平均粒径d50为0.082 mm。可见,新鲜污泥由于含有大量菌胶团及大分子有机物,粒径较大;而填埋库污泥经过一段时间的降解,大分子有机物分解为小分子有机物及无机物,微生物中的胞内结合水转化为自由水[19]。因此,胶体颗粒占比大于新鲜污泥。此外,CAMPBELL等[19]研究发现,市政污泥约有90%的颗粒能过0.075 mm筛孔,本研究填埋库污泥小于0.075 mm的粒径占比85.5%,结果略大于其粒径。

    填埋库污泥有机质含量随取样深度的变化见图2。由图2可知,填埋库污泥的有机质含量最大可达55.2%,最小为28.2%,大部分为35.2%~44.8%,平均值为40.9%,且有机质含量随深度增加的变化规律不明显。对比新鲜污泥测得的有机质含量66.7%,填埋库污泥有机质含量较小,可见其降解程度远高于新鲜污泥,降解明显。

    填埋库污泥含水率随取样深度的变化如图3所示,由图3可知,填埋库污泥含水率为72.2%~76.3%,平均值为72.5%,低于新鲜污泥的含水率为82.0%,且随取样深度的变化不明显。其原因在于,土覆盖填埋库区并未在底部设置液体导排层,水分无法排走,因而测得的填埋库污泥含水率差异较小[20]

  • 为了研究过氧化氢(H2O2)和亚铁离子(Fe2+)对填埋库污泥(除特别说明外,以下简称为污泥)处理效果的影响,亚铁离子占干基4%和8%时,不同过氧化氢投加量调质污泥的孔隙比e随固结压力p的变化(e-lgp)分别见图4(a)图4(b)。由图4(a)可知,当亚铁离子占污泥干基4%时,对比原泥,发现芬顿药剂调质污泥的压缩指数较小(压缩指数即e-lgp曲线的斜率),且不同含量过氧化氢调质污泥的压缩指数大致相似。由图4(b)可知,当亚铁离子占污泥干基8%时,芬顿药剂调质污泥的压缩指数相比原泥明显减小,压缩性较低。其原因在于芬顿试剂破坏EPS后,二价铁等絮凝剂在污泥脱水过程中充当骨架结构作用[21],因而调质污泥的压缩性减小。此外,在不同应力范围内,原泥与调质污泥的孔隙比大小关系不同。由图4(a)可知,在应力为1~7 kPa时,原泥与调质污泥的孔隙比大致相同,但应力超过8 kPa后,随着压力的增加,原泥的孔隙比逐渐减小,且均小于调质污泥的初始孔隙比。由图4(b)可得到相同的规律,在压力较大的情况下,原泥的孔隙比随着压力的增大迅速减小。原因在于:加荷初期,原泥的颗粒接触点具有一定的胶结力,能够承受一定的压力而变形较小;但压力较大时胶结被破坏,原泥的变形较大,孔隙结构被压缩,因此,随着压力的增加,原泥的孔隙比明显减小[11]。此外,由图4(b)可知,亚铁离子占污泥干基8%时,调质污泥的初始孔隙比均小于原泥。这表明加入芬顿试剂后,污泥的孔隙结构被填充,密实度变高。

    由于渗透系数能够一定程度上反映同一类土的孔隙结构,不同过氧化氢(H2O2)和亚铁离子(Fe2+)配比下,调质污泥的渗透系数k随应力p和孔隙比e的变化见图5。由图5(a)可知,在应力相同的条件下,相比其他工况污泥的渗透系数,芬顿配比Fe2+=4%、H2O2=8%和芬顿配比Fe2+=8%、H2O2=12% 2组工况调质污泥的渗透系数较高,且远高于原泥的渗透系数,说明脱水性能较好。由图5(b)可知,随着孔隙比的减小,不同芬顿试剂调质污泥的渗透系数逐渐减小,反之,渗透性增大。在重合的孔隙比区间内,相同孔隙比下芬顿配比Fe2+=8%和H2O2=12%调质污泥的渗透系数最大,脱水性能最佳。其主要原因在于:该配比下,调制污泥中的亲水基团(如EPS)被芬顿试剂氧化破坏,释放结合水,当水流经污泥时所受阻力较小;同时,过氧化氢完全反应释放大量气体,因而调质污泥中的连通孔隙多于封闭孔隙,排水通道增多,渗透系数增大[4]。此外,由图5(b)可知,亚铁离子投加量为8%时,当H2O2投加量低于12%,同一孔隙比下污泥的渗透系数随过氧化氢投加量的增加而增大,反之则减小。可见,H2O2投加量并非越高越好,投加过量时,气泡会抑制羟基自由基数量,从而对污泥的脱水性能产生负效应[22]

    亚铁离子占干基4%和8%时,不同过氧化氢投加量调质污泥的抗剪强度随应力的变化见图6。由图6(a)可知:当应力较低时,芬顿试剂调质污泥的抗剪强度相比原泥略微提高;当应力较高时,调质污泥的抗剪强度则大幅度提高。由图6(b)可得到相同的规律,且不同过氧化氢投加量下的调质污泥抗剪强度差异较小。其原因在于:芬顿试剂会破坏胞外聚合物释放结合水,在应力作用下,调质污泥的初始孔隙比小于原泥,密实度高;同时,亚铁离子易被氧化,与带负电荷的污泥土颗粒形成胶体,胶结力增大,从而抗剪强度增强[13]

    综上所述,根据压缩特性及抗剪强度相似,而渗透特性最优的条件,选取芬顿试剂配比(Fe2+=8%、H2O2=12%)作为填埋库污泥的最佳配比,用最佳配比调质的污泥渗透系数相比原泥,高出一个数量级。

  • 在确定芬顿试剂最佳配比的基础上,研究氧化钙投加量对污泥压缩特性的影响,在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙调质污泥的孔隙比和压缩指数随应力的变化见图7。由图7(a)可知,与原泥相比,调质污泥的初始孔隙比明显减小,且氧化钙投加量越大,污泥初始孔隙比越小,污泥初始孔隙比与最终孔隙比的差值越小。这说明污泥经芬顿与氧化钙联合处理后体积明显减小。对比图7(a)图4(b)污泥的初始孔隙比可得,经芬顿与氧化钙联合处理后,污泥的初始孔隙比为3.0~4.4。相比于芬顿试剂调质污泥,初始孔隙比明显减小,能够达到减容减量的目的。这可以克服单一芬顿试剂调质污泥不能明显减容的缺点,在一定程度上可缓解填埋库容量饱和的现状,具有实际工程意义。随氧化钙投加量的增大,污泥初始孔隙比减小的原因在于,在反应过程中,氧化钙与污泥中的水分发生水化反应,释放热量致使污泥中的水分蒸发,且污泥中的固体物质质量也随着氧化钙投加量的增多而增加。曾庆洋等[23]研究发现,石灰投加比越大,污泥的初始含水率越低,这与本研究结果相同。

    图7(b)可知,原泥的压缩指数大于0.4,属于高压缩性土,在高于100 kPa压力下,随着压力的增大,原泥的压缩指数逐渐减小,压缩性变差。其原因在于,EPS使得结合水难以通过机械压滤方式直接排出[5]。此外,在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙的调质污泥在有侧限条件下受压,低于100 kPa时调质污泥的压缩指数随应力的增加逐渐增大,高于100 kPa后压缩指数几乎不变;而且,应力相同的情况下,与原泥相比,氧化钙投加量越大,调质污泥的压缩指数越小,压缩性越低。这是因为芬顿试剂调质填埋库污泥会释放大量气体[9],加入氧化钙后,碱首先发生中和反应,提升反应体系pH。随着氧化钙投加量的增加,氢氧化铁胶体转变为絮体,带负电荷的污泥土颗粒会与带正电的钙离子发生结合,在絮体表面形成氢氧化铁-硫酸钙晶体的复合刚性结构,土颗粒骨架形成,从而降低调质污泥的压缩性[24]。可见,芬顿与氧化钙联合处理的污泥若应用到土工建筑材料中,则沉降量较小,稳定性较高。

    在芬顿试剂最佳配比的条件下,分别投加5%、10%、15%氧化钙调质污泥的渗透系数随应力的变化见图8。由图8可知,在6 kPa荷载下,氧化钙投加量5%、10%、15%调质污泥的渗透系数分别为5.10×10−6、2.80×10−6和2.58×10−6 cm·s−1,远高于原泥的渗透系数1.19×10−7 cm· s−1。可见,芬顿与氧化钙联合处理后,填埋库污泥的渗透系数在10−6量级,与原泥相比,渗透系数大幅提高,脱水性能较优,调质效果较好。其原因在于:污泥经芬顿与氧化钙联合处理后,蛋白质和多糖均呈下降趋势,亲水性基团EPS得到有效去除;同时,氢氧化铁和钙的混合物嵌入到污泥的絮体中,形成刚性骨架与排水通道,也可能使污泥的脱水性能提高[25]

    为了验证经芬顿与氧化钙联合处理后,污泥是否形成刚性骨架,将调质污泥进行剪切。污泥的抗剪强度随应力的变化如图9所示。由图9可知,与原泥相比,调质污泥的抗剪强度明显增加,表明已形成刚性骨架,且在芬顿试剂最佳配比的条件下,随着氧化钙投加量的增加,调质污泥的抗剪强度略微增大,均满足填埋库填埋污泥无侧限抗压强度需高于50 kPa的要求[26]

    综上所述,芬顿试剂与氧化钙联合处理污泥后,随着氧化钙投加量的增加,填埋库污泥的初始孔隙比明显减小,压缩指数递减,抗剪强度略微递增,能够实现减容减量,作为污泥堆肥等资源化利用的前处理手段[27]。考虑到药剂调质处理后污泥的后续资源化利用、强碱性(芬顿与15%氧化钙联合处理污泥的pH为9.46)对环境的影响以及处理成本,在实际污泥处理工程中,氧化钙投加量15%是较为合适的添加量。于文华等[13]研究了生石灰对污泥处理的影响,发现氧化钙投加量为15%(干基)时,污泥比阻最低,脱水率最高,与本研究中有关氧化钙的适宜投加量相同。

  • 氯化铁(FeCl3)调制的污泥渗透系数大幅提高且能够实现减容减量,是常用的污泥调质药剂。WU等[28]分别加入了占填埋库污泥干基10%、20%、30%和40%的氯化铁(分别编号为F10、F20、F30、F40)进行药剂调质,将其实验结果与本研究结果进行对比,不同药剂调质污泥的渗透系数随应力和孔隙比的变化如图10所示。由图10(a)可知,在同一应力下,芬顿与氧化钙联合处理污泥的渗透系数均高于氯化铁药剂调质污泥的渗透系数。由于孔隙比是表征土体孔隙结构最直接的指标,由图10(b)可知,在孔隙比相同的条件下,芬顿与氧化钙联合处理污泥的渗透系数大于氯化铁调质污泥。其原因在于:加入氯化铁进行调质后,混凝作用未能将污泥全部胶体颗粒除去,从而形成封闭孔隙影响污泥的脱水性能[29];而芬顿与氧化钙联合处理污泥能够形成刚性骨架,连通孔隙较多,且随着亲水性胞外聚合物的减少,水分通过污泥所受阻力较小,因此渗透系数较高。

  • 1)借助常规土工实验方法发现,与新鲜污泥相比,填埋期为7 a的填埋库污泥降解明显,胶体颗粒占比较大,有机质含量及含水率远低于未经填埋的新鲜污泥,可见新鲜污泥与填埋库污泥的性质差异较大。

    2)根据压缩特性及抗剪强度相似,而渗透特性最优的条件,选取Fe2+=8%和H2O2=12%(pH为4)作为处理填埋库污泥芬顿试剂的最佳配比。芬顿联合氧化钙处理污泥后,发现随着氧化钙投加量的增加,污泥的初始孔隙比明显减小,压缩指数递减,抗剪强度略微递增,能够实现减容减量。考虑到联合处理后污泥的资源化利用和强碱性对环境的影响和处理成本,在实际填埋库污泥处理工程中,氧化钙投加量15%是较为合适的添加量。

    3)比较不同药剂调质污泥的渗透特性发现,芬顿与氧化钙联合处理填埋库污泥的渗透特性优于氯化铁药剂调质的污泥。其主要原因在于,氧化钙能够与铁离子形成骨架与透水通道,从而提高污泥强度。因此,建议在工程实践中采用芬顿联合氧化钙的方法处理填埋库污泥。

参考文献 (29)

返回顶部

目录

/

返回文章
返回