[1] |
ZHANG L, SUN X Y. Effects of bean dregs and crab shell powder additives on the composting of green waste[J]. Bioresource Technology, 2018, 260: 283-293. doi: 10.1016/j.biortech.2018.03.126
|
[2] |
ZHANG L, SUN X Y. Effects of earthworm casts and zeolite on the two-stage composting of green waste[J]. Waste Management, 2015, 39: 119-129. doi: 10.1016/j.wasman.2015.02.037
|
[3] |
杭怡琼, 薛惠琴, 陈谊, 等. 利用白腐真菌对稻草秸秆的降解研究[J]. 上海交通大学学报(农业科学版), 2002, 20(s1): 11-14.
|
[4] |
黄丹莲. 堆肥微生物群落演替及木质素降解功能微生物强化堆肥机理研究[D]. 长沙: 湖南大学, 2011.
|
[5] |
CERDA A, GEA T, VARGAS M C, et al. Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity[J]. Science of the Total Environment, 2017, 589: 56-65. doi: 10.1016/j.scitotenv.2017.02.184
|
[6] |
JUTURU V, WU J C. Microbial cellulases: Engineering, production and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 188-203. doi: 10.1016/j.rser.2014.01.077
|
[7] |
BARRINGTON S, CHOINIERE D, TRIGUI M, et al. Compost convective airflow under passive aeration[J]. Bioresource Technology, 2003, 86(3): 259-266. doi: 10.1016/S0960-8524(02)00155-4
|
[8] |
BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453. doi: 10.1016/j.biortech.2008.11.027
|
[9] |
ONWOSI C O, IGBOKWE V C, ODIMBA J N, et al. Composting technology in waste stabilization: On the methods, challenges and future prospects[J]. Journal of Environmental Management, 2017, 190: 140-157.
|
[10] |
REYES M, OVIEDO E R, DOMINGUEZ I, et al. A systematic review on the composting of green waste: Feedstock quality and optimization strategies[J]. Waste Management, 2018, 77: 486-499. doi: 10.1016/j.wasman.2018.04.037
|
[11] |
CHANDNA P, NAIN L, SINGH S, et al. Assessment of bacterial diversity during composting of agricultural byproducts[J]. BMC Microbiology, 2013, 13(1): 99. doi: 10.1186/1471-2180-13-99
|
[12] |
WU J Q, ZHAO Y, ZHAO W, et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology, 2017, 226: 191-199. doi: 10.1016/j.biortech.2016.12.031
|
[13] |
张凤, 任勇翔, 张海阳, 等. 投加方式和通风速率对脱水污泥堆肥效果的影响[J]. 环境工程学报, 2018, 12(8): 2372-2378. doi: 10.12030/j.cjee.201803070
|
[14] |
张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015.
|
[15] |
MAO H, LV Z, SUN H, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202. doi: 10.1016/j.biortech.2018.02.082
|
[16] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
[17] |
张岩, 王淑琦, 耿雪萌, 等. 纤维素酶促进绿化废弃物堆肥腐熟的初步研究[J]. 环境科学与技术, 2018, 41(2): 144-150.
|
[18] |
ZHANG L, SUN X Y. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting[J]. Bioresource Technology, 2018, 267: 182-191. doi: 10.1016/j.biortech.2018.07.040
|
[19] |
刘冠宏, 张森, 郭小平, 等. 绿化废弃物堆肥配制喷播基质的试验研究[J]. 环境科学与技术, 2018, 41(5): 61-66.
|
[20] |
顾娟, 齐希光, 李秀芬, 等. 固态微生物菌剂的制备及其在好氧堆肥中的应用[J]. 环境工程学报, 2020, 14(1): 253-261. doi: 10.12030/j.cjee.201902121
|
[21] |
方诩, 秦玉琪, 李雪芝, 等. 纤维素酶与木质纤维素生物降解转化的研究进展[J]. 生物工程学报, 2010, 26(7): 864-869.
|
[22] |
JUMNOODOO V, MOHEE R. Evaluation of FTIR spectroscopy as a maturity index for herbicide-contaminated composts[J]. International Journal of Environment and Waste Management, 2012, 9(1/2): 89-99. doi: 10.1504/IJEWM.2012.044162
|
[23] |
ZHANG Q Z, HE G F, WANG J, et al. Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis[J]. Applied Energy, 2009, 86: 233-237. doi: 10.1016/j.apenergy.2009.04.030
|
[24] |
魏自民, 席北斗, 赵越, 等. 城市生活垃圾外源微生物堆肥对有机酸变化及堆肥腐熟度的影响[J]. 环境科学, 2006, 27(2): 376-380. doi: 10.3321/j.issn:0250-3301.2006.02.036
|
[25] |
李英凯, 李佳丽, 孙溪悦, 等. 添加牛粪和园林废弃物对污泥蚯蚓堆肥的影响[J]. 环境工程学报, 2020, 14(1): 197-208. doi: 10.12030/j.cjee.201903086
|
[26] |
SHARIFI Z, RENELLA G. Assessment of a particle size fractionation as a technology for reducing heavy metal, salinity and impurities from compost produced by municipal solid waste[J]. Waste Management, 2015, 38(1): 95-101.
|
[27] |
刘小鸿, 李磊, 郭小平, 等. 翻堆和补水工艺对绿化废弃物堆肥腐熟度的影响[J]. 科学技术与工程, 2018, 18(7): 281-287. doi: 10.3969/j.issn.1671-1815.2018.07.051
|
[28] |
LIU L, WANG S Q, GUO X P, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Management, 2018, 73: 101-112. doi: 10.1016/j.wasman.2017.12.026
|
[29] |
张亚宁. 堆肥腐熟度快速测定指标和方法的建立[D]. 北京: 中国农业大学, 2004.
|
[30] |
KULIKOWSKA D, KLIMIUK E. Organic matter transformations and kinetics during sewage sludge composting in a two-stage system[J]. Bioresource Technology, 2011, 102(23): 10951-10958. doi: 10.1016/j.biortech.2011.09.009
|
[31] |
曹晓璐. 园林废弃物制造栽培基质过程中微生物的动态变化[D]. 北京: 中国林业科学研究院, 2014.
|
[32] |
TAHA M, FODA M, SHAHSAVARI E, et al. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges[J]. Current Opinion in Biotechnology, 2016, 38: 190-197. doi: 10.1016/j.copbio.2016.02.012
|
[33] |
劳德坤, 张陇利, 李永斌, 等. 不同接种量的微生物秸秆腐熟剂对蔬菜副产物堆肥效果的影响[J]. 环境工程学报, 2015, 9(6): 2979-2985. doi: 10.12030/j.cjee.20150672
|
[34] |
ZHANG L, SUN X Y. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste[J]. Bioresource Technology, 2014, 163: 112-122. doi: 10.1016/j.biortech.2014.04.041
|