-
厌氧消化是目前处理城市污泥最广泛有效的处置方式,国内外关于污泥厌氧消化协同处理技术大量涌现,主要集中在寻找合适的消化基质组合和投配比方面[1]。在选择消化基质方面,一般选择易降解、可生化性高的生物质垃圾,秸秆、餐厨垃圾、动物粪便、水果废弃物等[2-4]。而关于城市污泥与垃圾焚烧厂渗滤液协同消化的研究还鲜有报道。近年来,较多城市都面临着“垃圾围城”的困扰,垃圾焚烧是实现生活垃圾减量化的有效手段。随着土地资源日益紧张,垃圾焚烧厂的建设已进入加速期[5]。如何有效处理焚烧厂渗滤液是当前亟待解决的问题。此外,为了实现城市生活废物处理设施的综合化和集成化,我国开始将污水处理厂、垃圾焚烧厂等大型环卫设施集中建设[6]。该措施有利于促进这些处理单位开展协同处理及资源化利用工作。本研究采取城市污泥与焚烧厂渗滤液协同厌氧消化的方法,将有助于未来废物处理体系的综合性和集成性,提高运行效率,并降低处理成本和物流成本[6]。污水处理厂剩余污泥有机质、C/N相对较低,C/N一般为7,远低于厌氧消化微生物最佳C/N (20~30)[7];而初沉污泥C/N相对较高,可为剩余污泥补充一部分碳源。垃圾焚烧厂渗滤液由于垃圾储存周期较短,产生的废液为“新鲜”的垃圾渗滤液,COD、BOD及可生化性都高于垃圾填埋场渗滤液,故其有机质含量相对较高,还含有氯、钠、钾等盐类[8]。焚烧厂渗滤液和污泥在组成成分上具有较好的互补性,为二者的协同处理奠定了基础。零价铁在环境领域的应用一直备受关注,广泛应用于染料废水处理、重金属和硝酸盐去除、苯酚降解等领域[9-11];同时,在细菌污染水处理[12]、降解抗生素[13]和土壤修复[14]方面也表现优异。零价铁廉价易得、对环境友好,在厌氧消化方面,能为微生物提供必要的营养元素,其还原性能促进消化基质酸化水解[15],并为消化过程提供更佳的厌氧环境;而且,零价铁还能合成和激活产酸、产甲烷阶段的多种酶[16],实现甲烷增产的目的。
本研究分析零价铁对城市污泥和渗滤液协同消化产酸、产甲烷过程的影响以及有机物、消化液离子的变化情况,寻找效果最佳的零价铁投加量,为市政废物集中化高效协同处理提供参考。
零价铁强化城市污泥与垃圾焚烧厂渗滤液协同厌氧消化
Enhancement for anaerobic co-digestion of municipal sludge and leachate from waste incineration plant with zero valent iron
-
摘要: 针对城市污泥(初沉污泥、剩余污泥)和垃圾焚烧厂渗滤液2种市政废物的协同厌氧消化产气量不足的问题,采用投加零价铁的方式,探究零价铁对厌氧消化过程中产酸和产甲烷阶段的强化作用,并研究消化前后COD、VSS、氨氮以及上清液离子的变化。以初沉污泥与剩余污泥体积比4∶1、渗滤液添加量为15%的基质作为底物,投加不同浓度零价铁进行厌氧消化。结果表明:零价铁能有效提升协同厌氧消化系统中总挥发性脂肪酸产量、促进丙酸分解、进一步降解复杂有机物;当零价铁投入量为4 g·L−1时,累计产甲烷量最高达189.65 mL·g−1(以VSS计),相比对照组提升了30.1%,其产气速率符合一次函数和Scholl Canyon模型指数衰减规律;在25 g·L−1和40 g·L−1的高投加量零价铁条件下,产气高峰提前,但累计甲烷产量低于对照组;随着零价铁的投加量增加,COD降解率呈下降趋势,VSS降解率提升,氨氮变化不大;此外,消化液上清液中,正磷酸盐、硫酸根浓度明显减少,这与亚铁离子的混凝沉淀作用相关,同时也是削弱零价铁强化作用的原因之一。研究结果可为城市污泥和垃圾焚烧厂渗滤液协同厌氧消化提供参考。Abstract: In this study, zero valent iron (ZVI) was added to solve the problem of insufficient gas production from anaerobic co-digestion (ACD) of the two kinds of municipal wastes :municipal sludge (primary sludge, excess sludge) and leachate from waste incineration plant. The strengthening effects of acidogenic and methanogenic stages with addition of ZVI, and the changes of COD, VSS, ammonia nitrogen and ions in supernatant before and after ACD were studied. The mixture including primary sludge and excess sludge with the volume ratio of 4∶1 and 15% leachate was used as substrate to conduct the anaerobic digestion with the addition of ZVI of different concentrations. Results demonstrated that ZVI could effectively increase the total volatile fatty acids(TVFAs) production, promote the decomposition of propionic acid and further degrade complex organics in the synergetic ACD system. Compared with the performance of ACD without ZVI addition, the maximum cumulative methane production reached 189.65 mL·g−1 (VSS), and increased by 30.1% with the addition of 4 g·L−1 ZVI. Furthermore, its gas production rate accorded with the first-order function and the law of exponential decay in Scholl Canyon model. The peak of gas production was advanced under high dosages (25 g·L−1 and 40 g·L−1) of ZVI, while the methane production was lower than that without ZVI addition. With the increase of ZVI dosage, COD degradation rate showed a downward trend, VSS degradation rate increased, and ammonia nitrogen did not change much. In addition, ZVI addition led to a significant reduction of orthophosphate and sulfate in digestive supernatant, which was related to the coagulation and sedimentation of ferrous ions, and was also a reason for weakening the strengthening effect of ZVI. The results of this study can provide a reference for ACD of municipal sludge and landfill leachate.
-
表 1 城市污泥和渗滤液的理化参数
Table 1. Physicochemical parameters of municipal sludge and leachate
供试原料 pH 含水率/% COD/(mg·L−1) 氨氮/(mg·L−1) C/N 初沉污泥 6.39±0.03 95.75±0.11 35 725±170 295±3 29.22±2.32 剩余污泥 5.94±0.01 98.48±0.25 13 792±88 42±1 7.20±1.11 接种污泥 6.03±0.01 96.01±0.12 27 213±101 227±12 — 渗滤液 4.55±0.02 — 78 916±332 1 125±25 12.26±1.10 表 2 产气速率模型拟合结果
Table 2. Results of gas rate model fitting
表达式 k/d−1 L0/(mL·g−1) c R2 Q1=2.02t 2.02±0.17 — 0 0.93 Q2=1 823.58e−0.44t 0.44±0.07 307.00±0.01 — 0.93 Q3=2.44t−42.83 2.44±0.18 — −42.82±3.98 0.97 Q4=934.84e−0.38t 0.38±0.05 182.23±5.06 — 0.95 表 3 协同厌氧消化后消化液氨氮和各离子浓度
Table 3. Concentrations of ammonia nitrogen and ions in supernatant of digestive juice after anaerobic co-digestion
零价铁投加量/(g·L−1) 氨氮/(mg·L−1) ${ {\rm{SO}}_4^{2 - }} $ /(mg·L−1)${ {\rm{PO}}_4^{3 - }}$ /(mg·L−1)Fe2+/(mg·L−1) 0 727.0±21.3 49.063 0 3.59±0.12 9.16±0.23 1 698.9±18.7 29.404 8 2.06±0.34 14.85±0.45 4 624.0±23.1 17.259 0 2.01±0.21 23.05±1.29 10 674.5±16.6 22.831 2 0.75±0.03 40.42±2.46 25 662.1±7.1 16.297 8 0.03±0.00 79.41±6.13 40 652.1±13.1 16.259 1 0.88±0.02 75.99±3.11 -
[1] 夏兆辉, 孙婧, 董滨. 强化污泥厌氧消化产甲烷新技术研究进展[J]. 广东化工, 2018, 45(1): 72-74. doi: 10.3969/j.issn.1007-1865.2018.01.035 [2] FONOLL X, ASTALS S, DOSTA J, et al. Anaerobic co-digestion of sewage sludge and fruit wastes: Evaluation of the transitory states when the co-substrate is changed[J]. Chemical Engineering Journal, 2015, 262: 1268-1274. doi: 10.1016/j.cej.2014.10.045 [3] LIANG Y G, LI X J, ZHANG J, et al. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure[J]. Environmental Science and Pollution Research, 2017, 24(13): 12328-12337. doi: 10.1007/s11356-017-8832-9 [4] ALAGOZ B A, YENIGUN O, ERDINCLER A. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment[J]. Waste Management, 2015, 46: 182-188. doi: 10.1016/j.wasman.2015.08.020 [5] 中华人民共和国国家统计局. 中国统计年鉴(2016)[M]. 北京: 中国统计出版社, 2016. [6] 程澄, 卢加伟, 廖利. ArcGIS在环境园详细规划中的应用[J]. 环境卫生工程, 2011, 19(5): 53-56. doi: 10.3969/j.issn.1005-8206.2011.05.020 [7] CAPORGNO M P, TROBAJO R, CAIOLA N, et al. Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions[J]. Renewable Energy, 2015, 75: 374-380. doi: 10.1016/j.renene.2014.10.019 [8] 李进, 刘宗宽, 贺延龄. 城市生活垃圾焚烧厂渗滤液产甲烷潜力[J]. 环境工程学报, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196 [9] 杨世东, 陶文鑫, 崔鑫鑫, 等. 海绵铁缓解污水厌氧氨氧化反应器中硝酸盐积累的效果[J]. 农业工程学报, 2018, 34(22): 185-190. doi: 10.11975/j.issn.1002-6819.2018.22.023 [10] 马健伟, 任淑鹏, 宋亚瑞, 等. 零价铁技术在废水处理领域的应用研究进展[J]. 化学通报, 2019, 82(1): 3-11. [11] LIU Y, WANG J L. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review[J]. Science of the Total Environment, 2019, 671: 388-403. doi: 10.1016/j.scitotenv.2019.03.317 [12] HAN S, HUANG Y H, LIU Z. Bacterial indicator reduction in dairy manure using hybrid zero-valent iron (h-ZVI) system[J]. Environmental Science and Pollution Research, 2019, 26(11): 10790-10799. doi: 10.1007/s11356-019-04501-x [13] CHOKEJAROENRAT C, SAKULTHAEW C, ANGKAEW A, et al. Remediating sulfadimethoxine-contaminated aquaculture wastewater using ZVI-activated persulfate in a flow-through system[J]. Aquacultural Engineering, 2019, 84: 99-105. doi: 10.1016/j.aquaeng.2018.12.004 [14] 董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204-212. doi: 10.11975/j.issn.1002-6819.2016.15.028 [15] 李小兰, 周芸, 陈志燕, 等. 针铁矿强化剩余污泥与烟草废弃物厌氧发酵的研究[J]. 中国环境科学, 2019, 39(6): 2475-2482. doi: 10.3969/j.issn.1000-6923.2019.06.030 [16] FERRY J G. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1): 13-38. doi: 10.1111/j.1574-6976.1999.tb00390.x [17] 中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 北京: 中国标准出版社, 2005. [18] 国家环境保护总局. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2007. [19] 中华人民共和国环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2009. [20] 国家技术监督局. 水质 总磷的测定 钼酸铵分光光度法: GB 11893-1989[S]. 北京: 中国标准出版社, 1989. [21] 国家环境保护局. 水质 铁的测定 邻菲罗啉分光光度法: HJ/T 345-2007[S]. 北京: 中国环境科学出版社, 2007. [22] 孟旭升. 零价铁强化厌氧丙酸转化乙酸过程的研究[D]. 大连: 大连理工大学, 2013. [23] LIU Y C, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125: 171-189. doi: 10.1196/annals.1419.019 [24] SIRIWONGRUNGSON V, ZENY R J, ANGELIDAKI I. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis[J]. Water Research, 2007, 41(18): 4204-4210. doi: 10.1016/j.watres.2007.05.037 [25] ZHANG M, HE F, ZHAO D Y, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter[J]. Water Research, 2011, 45(7): 2401-2414. doi: 10.1016/j.watres.2011.01.028 [26] HE F, ZHAO D Y, PAUL C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones[J]. Water Research, 2010, 44(7): 2360-2370. doi: 10.1016/j.watres.2009.12.041 [27] 冯应鸿. 零价铁强化剩余污泥厌氧消化的研究[D]. 大连: 大连理工大学, 2014. [28] 郝晓地, 魏静, 曹达啟. 废铁屑强化污泥厌氧消化产甲烷可行性分析[J]. 环境科学学报, 2016, 36(8): 2730-2740. [29] LIU R B, HAO X D, WEI J. Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[J]. Chemical Engineering Journal, 2016, 284: 1196-1203. doi: 10.1016/j.cej.2015.09.081 [30] 唐波. 盐分和氨氮在餐厨垃圾干式厌氧消化系统中的积累及其对产气的影响分析[D]. 重庆: 重庆大学, 2015. [31] KJELDSEN P, BARLAZ M A, ROOKER A P, et al. Present and long-term composition of MSW landfill leachate: A review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297-336. doi: 10.1080/10643380290813462 [32] CHOU H, HUANG J C, CHEN W G, et al. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters[J]. Bioresource Technology, 2008, 99(17): 8061-8067. doi: 10.1016/j.biortech.2008.03.044 [33] HANSEN K H, ANGELIDAKI I, AHRING B K. Improving thermophilic anaerobic digestion of swine manure[J]. Water Research, 1999, 33(8): 1805-1810. doi: 10.1016/S0043-1354(98)00410-2 [34] KARRI S, SIERRA-ALVAREZ R, FIELD J A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge[J]. Biotechnology and Bioengineering, 2005, 92(7): 810-819. doi: 10.1002/bit.20623 [35] LIU Y W, ZHANG Y B, NI B J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors[J]. Water Research, 2015, 75: 292-300. doi: 10.1016/j.watres.2015.02.056 [36] 牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438. [37] HU Y S, HAO X D, ZHAO D, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J]. Chemosphere, 2015, 140: 34-39. doi: 10.1016/j.chemosphere.2014.10.022 [38] NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405(6782): 94-97. doi: 10.1038/35011098 [39] PUYOL D, FLORES-ALSINA X, SEGURA Y, et al. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process[J]. Chemical Engineering Journal, 2018, 335: 703-711. doi: 10.1016/j.cej.2017.11.029