-
赤泥是铝土矿提取氧化铝后排放的固体废弃物。每生产1 t氧化铝约产生0.5~2 t赤泥[1-2]。我国是世界上最大的赤泥产生国,每年产生赤泥约7×107 t[3-4]。目前,大多数国内氧化铝厂将赤泥输送至堆场筑坝堆存,全国累积堆存量约7×108 t[1,4],这不仅需要大面积占用稀缺的土地资源,而且由于铝土矿本身含有0.01%~0.15%的氟,从而使赤泥中存在大量的氟化物[3,5-6]。同时,在大气降水作用下,赤泥中的水溶性氟化物会通过渗透作用对附近土壤和地下水造成严重污染[7-8]。因此,如何有效去除赤泥中的氟,促进赤泥的进一步综合利用是氧化铝行业可持续发展亟需解决的难题。
近年来,国内外学者对如何去除土壤、水体中的氟进行了大量探索,先后出现了化学淋洗[9-10]、吸附[11-12]、电渗析[13-15]等技术。电渗析技术因具有操作简便、去除率高、能同时去除各种污染物等优点,从而在土壤、污泥、沉积物的污染去除方面得到了较多研究[16-20]。但是,利用电渗析技术去除赤泥中的氟化物却鲜见报道。本研究利用电渗析技术去除赤泥中的氟化物,在自制的电渗析装置中,将赤泥粉及去离子水搅拌形成悬浮液,以电压为推动力驱使悬浮液中的氟通过两端的离子交换膜,分析电渗析过程中电流、悬浮液pH和电导率(EC)的变化趋势,考察不同电压梯度及液固比下赤泥中氟化物的去除情况,旨在有效减少赤泥的环境污染,为其进一步综合利用提供参考。
赤泥中水溶性氟化物的电渗析去除
Electrodialysis removal of water-soluble fluoride from red mud
-
摘要: 为减少赤泥中的氟化物含量,采用自制电渗析装置,通过单因素实验对赤泥中的氟化物进行了电渗析去除研究,考查了电压梯度和液固比对电流以及悬浮液pH和电导率的影响,分析了电渗析技术去除赤泥中氟化物的效果。结果表明:电渗析初期,电流从最大值迅速减小;在同一电压梯度下,电流随着液固比的增大而减小;在电渗析过程中,悬浮液pH和电导率随时间的延长而减小;电渗析技术可有效去除赤泥中的水溶性氟,其去除量随着电压梯度的升高而增大,最高去除率可达77.22%;液固比增大减小了水溶性氟的去除量,在1.0和2.0 V·cm–1 电压梯度下,较大的液固比有助于水溶性氟的去除。利用电渗析技术去除赤泥中氟化物时,应综合考虑电压梯度和液固比对去除量及去除率的不同影响,在保证去除效果的同时尽可能降低能耗。研究结果可为赤泥的进一步综合利用提供参考。Abstract: In order to reduce the fluoride content in the red mud, self-made electrodialysis equipment was used to conduct a single-factor experiments studying the electrodialysis removal of fluoride in the red mud. The influences of voltage gradient and liquid-solid ratio on the current, as well as on the pH and conductivity of the suspension were investigated. The removal efficiency of fluoride in red mud by electrodialysis technique was analyzed. The results showed that the current decreased rapidly from the maximum value at the initial stage of electrodialysis. Under the same voltage gradient, the current decreased with the increase of liquid-solid ratio. During electrodialysis process, the pH and conductivity of the suspension decreased with the extension of time. The electrodialysis technique could effectively remove water-soluble fluorine in the red mud. The removal amount increased with the rise of the voltage gradient and its highest removal rate was 77.22%. The increase of the liquid-solid ratio reduced the removal amount of water-soluble fluorine. At 1.0 V·cm–1 or 2.0 V·cm–1 voltage gradient, higher liquid-solid ratio helps to remove water-soluble fluorine. When the electrodialysis technique was used to remove fluoride in the red mud, the different influence of voltage gradient and liquid-solid ratio on the removal amount and removal rate should be fully considered, so as to reduce the energy consumption as much as possible while ensuring the removal effect. The study can provide reference for the further comprehensive utilization of red mud.
-
Key words:
- electrodialysis /
- red mud /
- fluoride pollution /
- ion exchange membrane
-
表 1 赤泥中水溶性氟的去除及能耗
Table 1. Removal of water-soluble fluorine from red mud and energy consumption
电渗析
实验编号电压梯度/
(V·cm−1)液固比/
(mL·g−1)悬浮液中
赤泥质量/g电渗析前赤泥中
水溶性氟的质量/mg电渗析后赤泥中
水溶性氟的剩余量/mg水溶性氟的
去除率/%能耗/
(kWh·kg−1)A1 1.0 6 62.0 26.36 14.09 46.55 0.26 A2 1.0 8 48.0 20.40 7.54 63.02 0.32 A3 1.0 10 39.0 16.58 7.01 57.73 0.39 A4 1.0 12 33.0 14.03 5.05 64.00 0.46 B1 1.5 6 62.0 26.36 9.69 63.26 0.43 B2 1.5 8 48.0 20.40 7.95 61.01 0.51 B3 1.5 10 39.0 16.58 6.80 58.98 0.58 B4 1.5 12 33.0 14.03 5.37 61.75 0.68 C1 2.0 6 62.0 26.36 8.85 66.44 0.63 C2 2.0 8 48.0 20.40 5.75 71.81 0.72 C3 2.0 10 39.0 16.58 4.85 70.74 0.84 C4 2.0 12 33.0 14.03 3.20 77.22 0.96 -
[1] KONG X F, LI M, XUE S G, et al. Acid transformation of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324: 382-390. doi: 10.1016/j.jhazmat.2016.10.073 [2] XUE S G, KONG X F, ZHU F, et al. Proposal for management and alkalinity transformation of bauxite residue in China[J]. Environmental Science and Pollution Research, 2016, 23(13): 12822-12834. doi: 10.1007/s11356-016-6478-7 [3] LIU W C, CHEN X Q, LI W X, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84: 606-610. doi: 10.1016/j.jclepro.2014.06.080 [4] XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8 [5] 高华. 离子选择电极法测定铝土矿、赤泥中的氟[J]. 山西科技, 2004(2): 73-74. doi: 10.3969/j.issn.1004-6429.2004.02.038 [6] 南相莉, 张廷安, 刘燕, 等. 我国主要赤泥种类及其对环境的影响[J]. 过程工程学报, 2009, 9(S1): 459-464. [7] 袁霄梅, 熊飞, 李光, 等. 赤泥中氟的赋存状态[J]. 中国环境监测, 2008, 24(4): 46-49. doi: 10.3969/j.issn.1002-6002.2008.04.013 [8] 袁霄梅, 王冰莹, 原学政, 等. 赤泥中氟迁移转化的影响因素分析[J]. 中国岩溶, 2010, 29(3): 319-324. doi: 10.3969/j.issn.1001-4810.2010.03.015 [9] 袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 13-23. [10] MOON D H, JO R, KOUTSOSPYROS A, et al. Soil washing of fluorine contaminated soil using various washing solutions[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94: 334-339. doi: 10.1007/s00128-014-1449-5 [11] KUMAR P S, SUGANYA S, SRINIVAS S, et al. Treatment of fluoride-contaminated water: A review[J]. Environmental Chemistry Letters, 2019, 17: 1707-1726. doi: 10.1007/s10311-019-00906-9 [12] FAN Z Z, GAO Y F, NING X, et al. Adsorption of fluoride ions from water by SF/PP nonwoven fabrics[J]. Fibers and Polymers, 2019, 20(4): 863-867. doi: 10.1007/s12221-019-1085-0 [13] DAMTIE M M, WOO Y C, KIM B, et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review[J]. Journal of Environmental Management, 2019, 251: 109524. doi: 10.1016/j.jenvman.2019.109524 [14] SHARMA P P, YADAV V, MARU P D, et al. Mitigation of fluoride from brackish water via electrodialysis: An environmentally friendly process[J]. Chemistry Select, 2018, 3(2): 779-784. [15] AMOR Z, BARIOU B, MAMERI N, et al. Fluoride removal from brackish water by electrodialysis[J]. Desalination, 2001, 133(3): 215-223. doi: 10.1016/S0011-9164(01)00102-3 [16] FERREIRA A R, COUTO N, RIBEIRO A B, et al. Electrodialytic arsenic removal from bulk and pretreated soil[J]. Water, Air & Soil Pollution, 2019, 230(4): 78-88. [17] SUN T R, OTTOSEN L M, JENSEN P E, et al. Electrodialytic remediation of suspended soil: Comparison of two different soil fractions[J]. Journal of Hazardous Materials, 2012, 203: 229-235. [18] PEDERSEN K B, JENSEN P E, OTTOSEN L M, et al. An optimised method for electrodialytic removal of heavy metals from harbour sediments[J]. Electrochimica Acta, 2015, 173: 432-439. doi: 10.1016/j.electacta.2015.05.050 [19] KAPPEL A, VIADER R P, KOWALSKI K P, et al. Utilisation of electrodialytically treated sewage sludge ash in mortar[J]. Waste and Biomass Valorization, 2018, 9(12): 2503-2515. doi: 10.1007/s12649-018-0215-z [20] VIADER R P, JENSEN P E, OTTOSEN L M. Electrodialytic remediation of municipal solid waste incineration residues using different membranes[J]. Chemosphere, 2017, 169: 62-68. doi: 10.1016/j.chemosphere.2016.11.047 [21] 白万里, 马慧侠, 刘静, 等. X射线荧光光谱法测定高铁铝土矿中8种组分[J]. 理化检验(化学分册), 2018, 54(8): 973-979. [22] CLARK M W, JOHNSTON M, REICHELT-BRUSHETT A J. Comparison of several different neutralisations to a bauxite refinery residue: Potential effectiveness environmental ameliorants[J]. Applied Geochemistry, 2015, 56: 1-10. doi: 10.1016/j.apgeochem.2015.01.015 [23] MURAVYEVA I V, BEBESHKO G I. Determination of fluorine in aluminum production waste[J]. Inorganic Materials, 2014, 50(14): 1408-1411. doi: 10.1134/S0020168514140106 [24] 环境保护部. 土壤水溶性氟化物和总氟化物的测定离子选择电极法: HJ 873-2017[S]. 北京: 中国环境出版社, 2017. [25] 国家环境保护局. 水质氟化物的测定离子选择电极法: GB 7484-1987[S]. 北京: 中国标准出版社, 1987. [26] GHERASIM C V, KŘIVČÍK J, MIKULÁŠEK P. Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions[J]. Chemical Engineering Journal, 2014, 256: 324-334. doi: 10.1016/j.cej.2014.06.094 [27] BANASIAK L J, KRUTTSCHNITT T W, SCHÄFER A I. Desalination using electrodialysis as a function of voltage and salt concentration[J]. Desalination, 2007, 205(1/2/3): 38-46. [28] ARAHMAN N, MULYATI S, LUBIS M R, et al. The removal of fluoride from water based on applied current and membrane types in electrodialyis[J]. Journal of Fluorine Chemistry, 2016, 191: 97-102. doi: 10.1016/j.jfluchem.2016.10.002 [29] KONG X F, GUO Y, XUE S G, et al. Natural evolution of alkaline characteristics in bauxite residue[J]. Journal of Cleaner Production, 2017, 143: 224-230. doi: 10.1016/j.jclepro.2016.12.125 [30] GRÄFE M, POWER G, KLAUBER C. Bauxite residue issues: Ⅲ. Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108(1/2): 60-79. [31] GRÄFE M, KLAUBER C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation[J]. Hydrometallurgy, 2011, 108(1/2): 46-59. [32] JOHNSTON M, CLARK M W, MCMAHON P, et al. Alkalinity conversion of bauxite refinery residues by neutralization[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 710-715. [33] WENZEL W W, BLUM W E H. Fluorine speciation and mobility in F-contaminated soils[J]. Soil Science, 1992, 153(5): 357-364. doi: 10.1097/00010694-199205000-00003 [34] MANOHARAN V, LOGANATHAN P, TILLMAN R W, et al. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth[J]. Environmental Pollution, 2017, 145(3): 778-786.