-
近年来,随着我国教育、科研快速发展,高等院校、科研院所、科技企业或工业园区每年实验室废液产生量快速增长,成为环境污染的重要风险之一[1]。实验室废液污染物组分、浓度与开展的研究工作有关,成分复杂,以其“腐蚀性、爆炸性、高毒性”等危害性而被纳入《国家危险废物名录》。实验室废液有较大的环境风险,且由于污染物种类、含量、性质各异,处理处置困难,目前主要通过暂存或委托具有危险废物处置资质的企业进行废液收集、转运与处置[2]。上述处理处置模式导致科研机构危险废液处置费用逐年增加,难以维系。此外,部分省区危险废物处置能力近乎饱和,且可能由于某些废物处置资质受限问题(如含汞废物)而导致废液长期贮存,产生极大安全隐患。研制高效、可行、稳定的实验室废液减量化处理与达标排放技术和设备,对于创新性解决我国实验室废液污染问题、控制环境风险具有重要意义。
依据废液理化特性,实验室废液一般可分为无机类废液、有机类废液等[3],具体包括废溶剂、有机废液和重金属-有机复合类的酸/碱废液。其中,高浓度有毒有机废液、重金属-有机物络合物的废液处置极其困难,解决此类废液处理难题的关键在于高毒组分降解/脱毒和多元重金属-有机络合物破络-解络。酸/碱废液常采用扩算渗析回收法[4]、中和法、直接稀释法处理,重金属废液处理方法包括化学沉淀法[5]、铁氧体法[6-7]、电化学法[8]和吸附法[9]等,有机废液处理方法有生物法、高级氧化法[10-12]、溶剂萃取法[13]和焚烧法[14]等。事实上,单一处理方法并不能实现废液稳定处理与达标排放,“分类预处理+物化处理+生化处理”工艺、“螯合-混凝沉淀”方法可使处理出水主要指标达到市政污水纳管排放标准[12-13]。此外,依据《危险废物鉴别标准通则》,实验室废液在处理过程中产生的污泥、残渣仍属于危险废物,处置费用仍相对较高,但前人研究较少考虑处理过程产生的危险废物污泥及其安全处置问题[15]。因此,研究建立实验室废液处理与减量化、达标排放与环境风险控制的技术方法具有重要意义。
实验室废液降危减量化处理工艺与工程案例
Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste
-
摘要: 实验室废液降危减量化处理是控制废液环境风险、缓解危废处置能力不足、降低处置成本的重要途径。系统解析了4种典型实验室废液水质特征,提出“分类预处理+二级处理+末端吸附”的废液降危减量化处理思路。现场处理结果表明:分类混合废液中汞、铬、铅等一类污染物浓度较工业废液低,经处理后一类污染物均可达标,最终可纳入社区污水处理与再生利用系统深度净化回用或达标纳管排放;采用该工艺可将实验室废液总量减量40%~90%,第三方委托处置成本可降低85%。该工艺与应用案例可为科技园区、研究所或大学的实验室废液处理处置提供参考。Abstract: The risk and quantity reduction treatment of laboratory liquid waste is of crucial importance to control the lab environmental risks, alleviate the capacity shortage for hazardous waste disposal and decrease the disposal cost. This study carefully investigated the water quality characteristics of the laboratory liquid waste, and put forward the feasible treatment process to reduce the liquid waste amount and to minimize the environmental risks as much as possible. To achieve this goal, the laboratory liquid wastes are proposed to be separately pretreated according to their characters, then these classified liquid wastes are treated by secondary unit processes such as metals decomplexation and chemical precipitation. Finally, adsorption is used as the tertiary treatment process to achieve the Integrated Wastewater Discharge Standard for the effluents to urban drainage. Results of field investigation indicated that the concentrations of class-I pollutants such as Hg, Cr, and Pb were lower than those in industrial hazardous liquid waste, which can be treated by the proposed treatment process to meet the corresponding standards. The final effluents may be either discharged directly into the municipal drainage systems or be discharged into the community-level wastewater treatment station for further purification and reclamation. This process may reduce the amount of laboratory liquid wastes by 40%~90% and the cost by 85% as compared to be disposed by the third-party companies for hazardous wastes disposal. The process and its application cases provide reference for the disposal of the laboratory liquid wastes in research institutes, universities, and the Science Parks and so on.
-
表 1 实验室废液降危减量一体化设备进出水水质及其排放标准
Table 1. Water quality of laboratory liquid waste for influent, effluent and the corresponsive discharging standards
水质来源与标准 Ag2+/
(mg·L−1)总As/
(mg·L−1)Cd2+/
(mg·L−1)总Cr/
(mg·L−1)Cu2+/
(mg·L−1)Hg2+/
(mg·L−1)Ni2+/
(mg·L−1)Pb2+/
(mg·L−1)H+/
(mol·L−1)第1批次进水 0.1 4.8 6.5 336 105.4 78 0.1 0.1 2.5 第1批次出水 0.05 0.05 0.015 0.11 0.02 0.001 0.1 0.05 — 第2批次进水 38.7 6.4 22.2 5.58 56.4 252 6.6 1.8 2.4 第2批次出水 0.05 0.05 0.008 0.16 0.02 0.001 0.1 0.05 — 排放标准 0.2 0.1 0.02 0.5 1.0 0.002 0.4 0.1 — -
[1] 张峰. 北京市高校化学实验室废液管理研究[D]. 北京: 北京化工大学, 2016. [2] 彭实. 关于一些高校实验室废液管理现状的调研报告[J]. 实验技术与管理, 2010, 27(2): 153-157. doi: 10.3969/j.issn.1002-4956.2010.02.049 [3] 张奕, 贺缨, 程文涛. 高校实验室废水处理及污染防治措施评价初探[J]. 环境科学与技术, 2006, 29(8): 54-56. doi: 10.3969/j.issn.1003-6504.2006.08.023 [4] 徐铜文. 扩散渗析法回收工业酸性废液的研究进展[J]. 水处理技术, 2004, 30(2): 63-66. doi: 10.3969/j.issn.1000-3770.2004.02.001 [5] 杨中超, 朱利军, 刘锐平, 等. 强酸性高浓度含砷废水处理方法与经济性评价[J]. 环境工程学报, 2014, 8(6): 2205-2210. [6] 陈思锦, 顾卫星, 周品, 等. 铁氧体法处理锂电池废液及其产物臭氧催化性能[J]. 环境工程学报, 2018, 12(1): 265-271. doi: 10.12030/j.cjee.201703186 [7] LOU J C, CHANG C K. Completely treating heavy metal laboratory waste liquid by an improved ferrite process[J]. Separation and Purification Technology, 2007, 57(3): 513-518. doi: 10.1016/j.seppur.2006.11.005 [8] LUNA P B F G D, ALBUQUERQUE P M, SILVA C C, et al. Treatment of liquid waste produced in a small chemical laboratory using the photo-Fenton process[J]. Journal of Food Agriculture & Environment, 2013, 11(1): 1125-1128. [9] 肖利萍, 宋佳诺, 王睿键, 等. 固定床吸附柱处理含Mn2+酸性矿山废水[J]. 环境工程学报, 2018, 12(2): 475-481. doi: 10.12030/j.cjee.201707009 [10] 侯一宁. 高级化学氧化技术处理实验室废水的研究[D]. 成都: 四川大学, 2005. [11] 侯晨晨, 刘建国, 苏肇基, 等. 含苯酚危险废物的改进型Fenton氧化处理研究[J]. 环境工程学报, 2010, 4(6): 1405-1408. [12] 孙文静, 卫皇曌, 李先如, 等. 催化湿式氧化处理助剂废水工程及过程模拟[J]. 环境工程学报, 2018, 12(8): 2421-2428. doi: 10.12030/j.cjee.201801118 [13] 迟春娟, 张嗣炯. 液-液萃取处理高氯难降解有机废水[J]. 环境污染治理技术与设备, 2001, 2(6): 50-56. [14] 姜雨生, 谢凯, 唐丹平, 等. 实验室废液的收集与处理技术研究[J]. 环境工程技术学报, 2016, 6(5): 447-452. doi: 10.3969/j.issn.1674-991X.2016.05.066 [15] 张键, 周骥平, 周俊, 等. 高校实验室废液处置体系的初步建构[J]. 实验技术与管理, 2014, 31(8): 232-235. doi: 10.3969/j.issn.1002-4956.2014.08.060