Processing math: 100%

实验室废液降危减量化处理工艺与工程案例

苗时雨, 毛振钢, 刘锐平, 胡玖坤. 实验室废液降危减量化处理工艺与工程案例[J]. 环境工程学报, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
引用本文: 苗时雨, 毛振钢, 刘锐平, 胡玖坤. 实验室废液降危减量化处理工艺与工程案例[J]. 环境工程学报, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
MIAO Shiyu, MAO Zhengang, LIU Ruiping, HU Jiukun. Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
Citation: MIAO Shiyu, MAO Zhengang, LIU Ruiping, HU Jiukun. Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151

实验室废液降危减量化处理工艺与工程案例

    作者简介: 苗时雨(1990—),男,博士研究生。研究方向:高难度工业废水处理。E-mail:envmsy@163.com
    通讯作者: 毛振钢(1983—),男,硕士,工程师。研究方向:实验室危险废液处理。E-mail:zgmao@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(51925807);中国科学院重点部署项目(ZDRW-ZS-2016-5-4);中国科学院安全隐患整改及应急保障专项
  • 中图分类号: X531

Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste

    Corresponding author: MAO Zhengang, zgmao@rcees.ac.cn
  • 摘要: 实验室废液降危减量化处理是控制废液环境风险、缓解危废处置能力不足、降低处置成本的重要途径。系统解析了4种典型实验室废液水质特征,提出“分类预处理+二级处理+末端吸附”的废液降危减量化处理思路。现场处理结果表明:分类混合废液中汞、铬、铅等一类污染物浓度较工业废液低,经处理后一类污染物均可达标,最终可纳入社区污水处理与再生利用系统深度净化回用或达标纳管排放;采用该工艺可将实验室废液总量减量40%~90%,第三方委托处置成本可降低85%。该工艺与应用案例可为科技园区、研究所或大学的实验室废液处理处置提供参考。
  • 城市河道是城市景观生态系统的重要组成部分,具有提供水源、运输、防洪排涝、调节气候、降低环境污染的作用,对城市的生态环境建设和优化有着重要的意义[1-3]。随着经济技术的发展,沿海发达城市已经基本解决了河道水的黑臭问题,水环境质量也获得了阶段性的提升,但是城市河道水的总体品质并不高,尤其体现在水体感官性方面。河水的色度和透明度是人们最能够直观感受到的水质指标,因此,本研究通过尝试降低水体较高的色度,同时提高水体透明度,从而提高水体感官品质。导致河道水体感官品质不高的原因比较复杂,且与环境因素、河水的理化性质等有密切联系。河水中对感官品质有直接影响的物质主要有浮游植物及其产生的叶绿素a、悬浮固体和溶解性有机碳[4-6]。水中的基质对光线进行吸收、散射以及阻碍,或者对某一特定波段有强烈吸收光谱,从而导致本身带有一定颜色,这会导致水体色度较高或者透明度较低,进而降低感官品质[7-8]

    目前,提升水体感官品质的措施包括有物理处理法、生化生态处理法和物化处理法。物理处理方法包括引水换水和底泥疏浚等,其缺点是工程量大且费用昂贵。生化生态处理法包括人工湿地和生物滤池等物化处理法,但是此法占地大且处理速度慢。物化处理法包括混凝沉淀和加药气浮法等,其优势比较明显,但是在药剂投加和工艺流程等方面需要优化[9]

    滤布滤池是一种表层过滤技术,过滤介质(即滤布,一般由高分子纤维堆积而成)的网孔直径约为10~20 μm,其具有较高的除污精度,加之高分子纤维材质对水中有机物及SS等具有更好的黏附性能,因而能够在极小的过滤深度(约1~2 cm)条件下有效地去除污水中的颗粒污染物[10]。但在实际应用中,滤布滤池存在容易堵塞、过滤阻力大、需要频繁清洗等问题,而强化混凝技术与滤布滤池相结合可以有效改善以上这些不足。本研究以苏州市姑苏区河道水为研究对象,通过现场实验,考察强化混凝-滤布滤池系统对河水水质的净化效果,重点关注浮游植物、悬浮固体和溶解性有机碳这3类物质的变化情况,研究结果可为沿海发达城市解决河道水感官品质不高的问题提供借鉴和参考。

    强化混凝-沉淀-滤布滤池一体化装置如图1所示,装置总体积为8 m3,主要包括加药系统、混凝沉淀系统以及滤布滤池系统。装置进水量可调节,最大进水量为2.5 t·h−1。加药系统为2个带搅拌装置的水箱,可以通过计量泵调节加药量。沉淀区设计停留时间为1 h,体积为2.5 m3,并加装斜板以改善沉淀效果。滤布滤池系统选择转盘过滤池,共有2个转盘,直径为1 m,转盘材质为不锈钢,滤布材料为PE和PA纤维,网孔直径为5 μm,绒毛长度为10~14 mm,滤布重量为700~850 g·m−2,过滤滤速为10~12 m3·(h·m2)−1,反抽吸强度不超过333 L·(m·s)−1。沉淀池部分设备规格为1.5 m×0.5 m×2.2 m,纤维转盘设备规格为1.5 m×1.5 m×2.5 m,装置整体尺寸为3 m×1.5 m×2.2 m,装机功率为3 kW。设备体积小,运行管理方便,均为自动化处理流程。

    图 1  强化混凝-滤布滤池一体化装置
    Figure 1.  The integrated device of enhanced coagulation-cloth-media filter

    以苏州市姑苏区外城河为研究对象,选择平门附近的十字洋河汇入点安装现场实验装置,此处河水流量较大,对苏州外成河以及姑苏区各个水系均有较大影响。实验期间气温为25~35 ℃,水温为20~25 ℃。通过进水泵从河道抽水至强化混凝滤布滤池一体化装置,连续运行并监测分析进水、混凝沉淀以及过滤出水水质,以考察系统对河道水质的改善效果。现场检测的指标主要为温度、浊度和透明度等,其余指标则通过在进水处、沉淀池上清液和出水口取样,在4 ℃环境中密封保存,并尽快于上海交通大学实验室进行检测分析。采样频率为每周2次,中试期间共采样6次。分析指标主要包括有机碳、总氮、色度、三维荧光吸光度、浮游植物及其产生的叶绿素a、悬浮颗粒粒径分布等。其中三维荧光吸光度和有机碳、总氮在经过0.45 μm的玻璃纤维膜过滤后的水样中测定。

    浊度采用HACH-2100Q哈希浊度仪现场测定;色度使用哈希DR6000分光光度计测定;透明度通过将水样注入圆筒柱,并对透明度盘进行目测得到;三维荧光图谱采用日立F-7000荧光仪进行扫描;TOC、DIC和TN使用德国耶拿分析仪器股份公司生产的multi3100型总有机碳/氮分析仪分析;TP采用高温消解-钼酸铵分光光度法进行测定;水样颗粒粒径分析使用美国BECKMAN COULTER生产的Delsa Nano C型粒度分析仪进行分析测定;藻细胞及叶绿素a采用流式细胞仪Beckman Cytoflex (Beckman Coutler)和浮游植物荧光仪进行分析测定。

    基础数据采用Excel和Origin pro8进行分析;三维荧光数据预处理和分析工作采用Matlab 2018a完成,水质参数的相关性分析使用SPSS 24.0完成。

    在前期实验室混凝优化实验的基础上,现场实验以聚合氯化铝(PAC)为混凝剂,投加量为10 mg·L−1,纳米四氧化三铁为助凝剂,颗粒粒径为100 nm,投加量为2.5 mg·L−1。将进水量稳定在2 000 L·h−1,持续运行,观察装置的运行效果。

    图2为2019年6月5—24日强化混凝滤布滤池一体化装置对河道水浊度的平均去除效果。6月份的河道水水质较差,浊度较高,这主要是由于气温逐渐升高,河水中的浮游植物生长繁殖旺盛,同时6月份进入梅雨季节,雨水以及风的搅动使得河水底部的沉沙悬浮颗粒物进入河水之中,导致河水感官品质下降。由图2可知,强化混凝滤布滤池一体化装置可以有效改善河道水浊度较高且波动大的问题,尽管6月份整体河水的浊度为27.9~49.8 NTU,但沉淀区出水以及过滤出水浊度较为稳定,分别为7.4~11.4 NTU和2.5~5.1 NTU,总去除率为84.8%~94.1%,因此,可有效改善河水品质。

    图 2  装置对浊度的去除效果
    Figure 2.  Removal effect of turbidity by the equipment

    河道水中大量的悬浮固体对光线的阻碍是造成河水浊度较高的主要原因。使用粒度分析仪对进水、沉淀出水以及滤池出水进行颗粒粒径分布分析,结果如图3所示。可以看出,水中的颗粒粒径分布与正态分布相似,并且进水区、沉淀区、出水区粒径范围逐渐减小,平均粒径大小有所下降。对比沉淀区和出水区,可以看出,混凝沉淀环节能有效去除粒径范围大于1 200 nm的颗粒物,出水中颗粒物粒径基本分布在500~1 000 nm。聚合氯化铝溶解进入水中之后,能够通过压缩双电层、吸附电中和及吸附架桥等作用对胶体和大颗粒的悬浮物进行有效去除,而纳米铁的使用不仅减少了PAC的投加量,也加速了沉淀过程。对比出水区和沉淀区的颗粒粒径可以看到,滤布滤池可进一步降低颗粒物的平均粒径,转盘上的浓密纤维绒毛去除了混凝沉淀过程中没有得到有效去除的粒径范围为800~1 000 nm的悬浮物。

    图 3  悬浮颗粒物粒径分布
    Figure 3.  Distribution range of particle size

    有机碳可对河道水中的水生生态系统以及微生物的生存和生长起到重要的作用,是影响水质的重要指标;氮磷含量可以直接影响水体富营养化程度和河水中浮游植物的生长情况。一体化装置对有机碳、总氮、总磷的去除效果如表1所示。

    表 1  装置对有机碳、总氮、总磷的去除效果
    Table 1.  Removal effect of TOC,TN,TP by the equipment mg·L−1
    区域TOCTPTN
    进水区7.250.252.11
    沉淀区5.530.131.93
    出水区3.840.070.94
     | Show Table
    DownLoad: CSV

    表1可知,滤布滤池系统对TOC、TP、TN均有不同程度的去除效果,其去除率分别为47.1%、72.0%、55.2%。在混凝-沉淀阶段,主要去除大部分的胶体和絮凝物,在这个过程中,也去除了吸附在胶体或者悬浮颗粒物上的有机物和氮磷;在滤布滤池处理阶段,河水中的有机碳和氮磷能够被滤布上的纤维绒毛截留。因此,混凝沉淀与滤布滤池的结合能够对水中的溶解性物质有一定的去除效果。装置对有机碳和总氮的去除效果接近,而对总磷的去除效果最好,这是因为河水中的PO34可与Al3+、Fe3+等金属离子形成沉淀物。除此之外,磷元素有一部分是以颗粒态的形式存在于河水中的,而滤布滤池系统能够有效去除颗粒态的物质。氮磷元素的去除降低了富营养化的可能性,也能够抑制出水的藻类生殖繁衍潜力。

    河道水中有机物对水质有一定影响,其中有色溶解性污染物(CDOM)主要由腐烂物质释放的单宁酸引起,这不仅对水环境中的生物活动有重要影响,而且在短波段有强烈的吸收光谱,使得含有CDOM的水体带有颜色,与河水色度有较高相关性[11]。为进一步考察装置对有机物的去除效果,使用三维荧光分光光度计对处理后的水样进行扫描,三维荧光图谱如图4所示。

    图 4  进水区、沉淀区、出水区的三维荧光光谱
    Figure 4.  Three-dimensional fluorescence of water in inlet zone, sedimentation zone, outlet zone

    图4可以看出,3个水样的荧光图并没有发生本质上的变化,但从进水到出水,荧光强度均有一定程度的减弱。图4中总共有2个峰值,分别在Ex/Em=225 nm/340 nm和Ex/Em=275 nm/325 nm。有研究[12-13]表明,这2种有机物分别为外来有机物和类色氨酸基团。类色氨酸基团源于生物降解类蛋白质,外来有机物可能来自河道中排放的有害有机物,如PAH、杀虫剂、表面活性剂等。将三维荧光图谱重点指标进行汇总,结果如表2所示。

    表 2  三维荧光图谱重点指标及CDOM的去除
    Table 2.  Key indicators in three-dimensional fluorescence and CDOM removal
    区域荧光指数(FI)自生源指标(BIX)腐殖化指数(HIX)有色溶解性有机物相对含量(CDOM)
    进水区0.930.22−0.204.0
    沉淀区0.850.220.0223.2
    出水区0.880.170.732.8
     | Show Table
    DownLoad: CSV

    荧光指数(FI)反映了芳香与非芳香氨基酸对CDOM荧光强度的相对贡献率,是衡量CDOM的来源及降解程度的指标。FI<1.4,说明河水中的溶解性腐殖质是来自陆生植物和土壤有机质等外源输入。自生源指标(BIX)反映了新产生的CDOM在整体CDOM中占的比例。自生源指数越高,表明CDOM的降解程度越高,内源碳产物越容易生成。BIX在0.2左右,说明河水中的CDOM较为稳定。因此,河道水中对色度有影响的CDOM难以通过河水的降解自动消除。腐殖化指数(HIX)反映了CDOM的输入源特征。HIX指数较小,证明CDOM主要来源于生物活动,而且其腐殖化程度较小[14]。这一结果也表明,经过滤布滤池处理之后再回水至河道,也不会对河道水的有机组成产生明显影响。虽然装置对CDOM有一定去除效果,但由于CDOM是一种小分子难降解有机物,因此,其去除率仅为30.2%,相对于有机碳和氮磷较低。

    浮游植物及其产生的叶绿素a是影响河水品质的重要因素[15]。因此,提升河道水的综合品质需要对浮游植物及叶绿素a进行有效去除。用流式细胞仪对进水、沉淀出水以及滤池出水中的藻细胞进行分析,结果如图5所示。流式细胞仪分析的主要指标有FSC(表征细胞的大小)、SSC(细胞复杂程度)、PE(藻红蛋白含量)、PC-5.5(叶绿素a含量)、APC(藻蓝蛋白)[16-17]。将水样各个指标之间进行作图可以得到二维分布图,最终可将水样中的藻细胞分成3类,分别用黄、青、蓝3种颜色进行区分。

    图 5  进水、沉淀、出水的流式细胞仪二维分布图
    Figure 5.  Two-dimensional distribution map of influent, sedimentation and effluent with flow cytometer

    图5中,红色区域为荧光珠,稀释后的浓度为9.2×104个·mL−1,占比为92.2%,可作为藻细胞的参照。由图5可以看出:第1组黄色区域FSC,SSC最低,PE较少,而APC较高,经过初步判断这组藻细胞是小型的聚球藻;第2组青色区域FSC、SSC、PE、PC-5.5均高于第1组,藻蓝蛋白与第1组类似,经过初步判断这部分主要为微囊藻,聚球藻和微囊藻为蓝藻;第3组蓝色区域FSC、SSC、PE、PC-5.5与第2组类似,藻蓝蛋白APC低于第1组和第2组,经过初步判断这部分主要为绿藻。

    由此可见,6月份苏州河道水优势藻种主要是微囊藻和绿藻,小型聚球藻的含量较低,细胞最小。绿藻的PC-5.5(叶绿素a)指标较高,因此,相对其他2种藻类,绿藻会产生更多的叶绿素a。从进出水的藻细胞组成来看,进水区、沉淀区和出水区并没有发生变化,各组藻细胞形成的相对位置没有发生变化,而藻细胞呈现的密集度明显下降。

    对这3种组分以及叶绿素a的含量分别进行浓度统计,结果如图6所示。叶绿素a和藻类均在混凝沉淀阶段得到有效去除,并在滤布滤池阶段进一步降低。叶绿素a、微囊藻、绿藻、聚球藻的去除率分别为53.4%、95.0%、99.7%、99.8%。藻细胞的去除率接近浊度的去除率,这是因为藻细胞体积较大,均在1 000 nm以上,可在强化混凝滤布滤池一体机中得到有效去除。如图5所示,FSC(细胞形体大小)指标微囊藻低于其他几种藻,因此,去除率相对较小。相较于藻细胞,叶绿素a在混凝沉淀阶段的去除效果明显较弱。这说明,在混凝沉淀阶段的搅拌过程和混凝沉淀过程中,叶绿素a有一部分残留在河水之中,而没有随藻细胞的沉降而去除。

    图 6  装置对叶绿素a和藻类的去除效果
    Figure 6.  Removal effect of chlorophyll a and algae by the equipment

    装置进水区、沉淀区和出水区水样平均色度和透明度结果如表3所示。

    表 3  感官品质重点指标分析
    Table 3.  Key indicators analysis of sensory quality
    区域色度/度透明度/m
    进水区31±90.31±0.1
    沉淀区16±32.2±0.5
    出水区10±23±1
     | Show Table
    DownLoad: CSV

    对比出水和进水可以看到,强化混凝-滤布滤池一体化装置可以有效提升感官品质,并且出水色度能够降低到10度左右,平均去除率为67.7%,透明度能够提高到3 m,相对于进水,平均提高10倍。为了进一步分析色度和透明度的影响因素,对中试期间6次采集水样感官品质重点指标进行相关性分析,结果如表4所示。

    表 4  感官品质重点指标相关性分析
    Table 4.  Correlation analysis of key sensory quality indicators
    指标色度浊度叶绿素aTNTOCTP透明度聚球藻微囊藻绿藻CDOM
    色度NA
    浊度0.813*NA
    叶绿素a0.895*0.698*NA
    TN0.410.5980.559NA
    TOC0.5710.5760.5080.579NA
    TP0.698*0.789*0.6190.2380.338NA
    透明度−0.602*−0.899**−0.56−0.483−0.678−0.724*NA
    聚球藻0.5970.667*0.629*0.4890.5230.499−0.7*NA
    微囊藻0.5890.738*0.689*0.4050.5980.503−0.78*0.891*NA
    绿藻0.683*0.767*0.723*0.4470.6060.529−0.811*0.887*0.901*NA
    CDOM0.897*0.5950.4320.5320.5440.361−0.631*0.4720.4320.501NA
      注:*表示在α=0.05水平上,呈显著相关;**表示α=0.01水平上,呈极显著相关。
     | Show Table
    DownLoad: CSV

    表4可以看出,与色度呈显著相关的指标有总磷、浊度、叶绿素a、绿藻和CDOM。水体色度主要可分为表色度和真色度,其中,表色度主要是由河水中悬浮固体导致的,因此,河水的色度与浊度有较高相关性;而真色度则主要是由浮游植物产生的叶绿素a以及河水中的CDOM等物质导致的。装置对叶绿素a和CDOM的去除效果相对于悬浮固体较差,去除率在60%以下,因此,强化混凝-滤布滤池一体化装置对色度的去除率(67.7%)低于浊度的去除率(84.8%~94.1%)。在3种藻细胞之中,绿藻与色度呈显著相关,主要原因是绿藻的叶绿素含量相对其他2种藻更高,因此,相对于其他藻类,其对水体的色度有较大的影响。氮磷元素过剩是水体营养化的必要条件,但是并不会直接导致水质色度变化。在表4中,TP与色度、透明度以及浊度具有显著相关性,这是因为磷元素中的一部分是以颗粒态的形式存在于河水中的,与悬浮固体具有一定的共性,因此,随着悬浮固体的减少,色度、透明度和浊度出现了类似的下降趋势,所以具有显著相关性。

    和透明度呈显著相关的指标有总磷、浊度和3种藻细胞,其中浊度和透明度呈极显著相关。经过装置处理后的出水透明度得到了较大程度地提高,这是因为透明度主要取决于水体对光线的阻碍程度,故其与浊度的去除效果高度相关,而河水的浊度由25~50 NTU在装置进行一定处理后下降至2.5~5.1 NTU,因此,河水透明度也同样得到大幅度提高。同时藻细胞平均粒径较大,并且在温度较高的夏季繁衍较为旺盛,数量逐渐呈增长趋势,因此对河水透明度也会造成影响。在透明度和色度都得到有效改善的情况下,河水的感官品质得到了显著提高。

    1)滤布滤池一体机能连续稳定运行,并有效降低河水中的悬浮颗粒物的含量,对体积较大的颗粒(粒径为1 000 nm以上的颗粒)有较好的去除效果,出水的颗粒粒径为480~1 200 nm,可有效降低浊度,出水浊度为2.5~5.1 NTU,去除率为84.8%~94.1%。

    2)装置对溶解碳、总氮和总磷也有一定去除效果。对溶解性有机碳的平均去除率为47.1%,对总氮的去除率为41.1%,对总磷的去除率为72%,对有CDOM的去除率为30.2%。出水中的有机物以及氮磷元素含量降低,可以减少藻细胞增殖潜力,CDOM的去除能降低河道水色度。

    3)装置出水藻细胞的含量明显减少,装置对叶绿素a的去除率为53.4%,对聚球藻、微囊藻和绿藻的去除率分别为95.0%、99.7%、99.8%,并且不改变出水中浮游植物的组成和相对数量。

    4)河道水色度的主要影响因素有浊度、叶绿素a和CDOM的含量,透明度与浊度以及浮游植物有较高相关度。装置对这些物质均有一定的去除效果,这是能够改善水质提升感官品质的主要原因。此外,装置还有体积小、处理能力大、能耗低、操作容易等优点,且装置可移动,机动性较好,可随时应用于提升河道水品质的应急处理的过程中。

  • 图 1  实验室废液与社区污水联合处理系统

    Figure 1.  Schematic of laboratory liquid waste treatment and community-level sewage treatment systems

    图 2  实验室废液降危减量化处理工艺流程

    Figure 2.  Risk and quantity reduction process for laboratory liquid waste

    图 3  实验室废液降危减量一体化设备及其进、出水水样对比

    Figure 3.  Integrated laboratory liquid waste treatment facility and the comparison between the influent and effluent samples

    图 4  实验室废液降危减量化处置物料平衡

    Figure 4.  Mass balance diagram of laboratory liquid waste treatment process

    表 1  实验室废液降危减量一体化设备进出水水质及其排放标准

    Table 1.  Water quality of laboratory liquid waste for influent, effluent and the corresponsive discharging standards

    水质来源与标准Ag2+/(mg·L−1)总As/(mg·L−1)Cd2+/(mg·L−1)总Cr/(mg·L−1)Cu2+/(mg·L−1)Hg2+/(mg·L−1)Ni2+/(mg·L−1)Pb2+/(mg·L−1)H+/(mol·L−1)
    第1批次进水0.14.86.5336105.4780.10.12.5
    第1批次出水0.050.050.0150.110.020.0010.10.05
    第2批次进水38.76.422.25.5856.42526.61.82.4
    第2批次出水0.050.050.0080.160.020.0010.10.05
    排放标准0.20.10.020.51.00.0020.40.1
    水质来源与标准Ag2+/(mg·L−1)总As/(mg·L−1)Cd2+/(mg·L−1)总Cr/(mg·L−1)Cu2+/(mg·L−1)Hg2+/(mg·L−1)Ni2+/(mg·L−1)Pb2+/(mg·L−1)H+/(mol·L−1)
    第1批次进水0.14.86.5336105.4780.10.12.5
    第1批次出水0.050.050.0150.110.020.0010.10.05
    第2批次进水38.76.422.25.5856.42526.61.82.4
    第2批次出水0.050.050.0080.160.020.0010.10.05
    排放标准0.20.10.020.51.00.0020.40.1
    下载: 导出CSV
  • [1] 张峰. 北京市高校化学实验室废液管理研究[D]. 北京: 北京化工大学, 2016.
    [2] 彭实. 关于一些高校实验室废液管理现状的调研报告[J]. 实验技术与管理, 2010, 27(2): 153-157. doi: 10.3969/j.issn.1002-4956.2010.02.049
    [3] 张奕, 贺缨, 程文涛. 高校实验室废水处理及污染防治措施评价初探[J]. 环境科学与技术, 2006, 29(8): 54-56. doi: 10.3969/j.issn.1003-6504.2006.08.023
    [4] 徐铜文. 扩散渗析法回收工业酸性废液的研究进展[J]. 水处理技术, 2004, 30(2): 63-66. doi: 10.3969/j.issn.1000-3770.2004.02.001
    [5] 杨中超, 朱利军, 刘锐平, 等. 强酸性高浓度含砷废水处理方法与经济性评价[J]. 环境工程学报, 2014, 8(6): 2205-2210.
    [6] 陈思锦, 顾卫星, 周品, 等. 铁氧体法处理锂电池废液及其产物臭氧催化性能[J]. 环境工程学报, 2018, 12(1): 265-271. doi: 10.12030/j.cjee.201703186
    [7] LOU J C, CHANG C K. Completely treating heavy metal laboratory waste liquid by an improved ferrite process[J]. Separation and Purification Technology, 2007, 57(3): 513-518. doi: 10.1016/j.seppur.2006.11.005
    [8] LUNA P B F G D, ALBUQUERQUE P M, SILVA C C, et al. Treatment of liquid waste produced in a small chemical laboratory using the photo-Fenton process[J]. Journal of Food Agriculture & Environment, 2013, 11(1): 1125-1128.
    [9] 肖利萍, 宋佳诺, 王睿键, 等. 固定床吸附柱处理含Mn2+酸性矿山废水[J]. 环境工程学报, 2018, 12(2): 475-481. doi: 10.12030/j.cjee.201707009
    [10] 侯一宁. 高级化学氧化技术处理实验室废水的研究[D]. 成都: 四川大学, 2005.
    [11] 侯晨晨, 刘建国, 苏肇基, 等. 含苯酚危险废物的改进型Fenton氧化处理研究[J]. 环境工程学报, 2010, 4(6): 1405-1408.
    [12] 孙文静, 卫皇曌, 李先如, 等. 催化湿式氧化处理助剂废水工程及过程模拟[J]. 环境工程学报, 2018, 12(8): 2421-2428. doi: 10.12030/j.cjee.201801118
    [13] 迟春娟, 张嗣炯. 液-液萃取处理高氯难降解有机废水[J]. 环境污染治理技术与设备, 2001, 2(6): 50-56.
    [14] 姜雨生, 谢凯, 唐丹平, 等. 实验室废液的收集与处理技术研究[J]. 环境工程技术学报, 2016, 6(5): 447-452. doi: 10.3969/j.issn.1674-991X.2016.05.066
    [15] 张键, 周骥平, 周俊, 等. 高校实验室废液处置体系的初步建构[J]. 实验技术与管理, 2014, 31(8): 232-235. doi: 10.3969/j.issn.1002-4956.2014.08.060
  • 加载中
图( 4) 表( 1)
计量
  • 文章访问数:  5445
  • HTML全文浏览数:  5445
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-22
  • 录用日期:  2020-04-21
  • 刊出日期:  2020-07-01
苗时雨, 毛振钢, 刘锐平, 胡玖坤. 实验室废液降危减量化处理工艺与工程案例[J]. 环境工程学报, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
引用本文: 苗时雨, 毛振钢, 刘锐平, 胡玖坤. 实验室废液降危减量化处理工艺与工程案例[J]. 环境工程学报, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
MIAO Shiyu, MAO Zhengang, LIU Ruiping, HU Jiukun. Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151
Citation: MIAO Shiyu, MAO Zhengang, LIU Ruiping, HU Jiukun. Treatment process and engineering cases for the risk and quantity reduction of laboratory liquid waste[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1944-1949. doi: 10.12030/j.cjee.202001151

实验室废液降危减量化处理工艺与工程案例

    通讯作者: 毛振钢(1983—),男,硕士,工程师。研究方向:实验室危险废液处理。E-mail:zgmao@rcees.ac.cn
    作者简介: 苗时雨(1990—),男,博士研究生。研究方向:高难度工业废水处理。E-mail:envmsy@163.com
  • 1. 中国科学院生态环境研究中心,北京 100085
  • 2. 中国科学院大学,北京 100049
  • 3. 清华大学环境学院,水质与水生态研究中心,北京 100084
  • 4. 大江环境股份有限公司,南京 210019
基金项目:
国家自然科学基金资助项目(51925807);中国科学院重点部署项目(ZDRW-ZS-2016-5-4);中国科学院安全隐患整改及应急保障专项

摘要: 实验室废液降危减量化处理是控制废液环境风险、缓解危废处置能力不足、降低处置成本的重要途径。系统解析了4种典型实验室废液水质特征,提出“分类预处理+二级处理+末端吸附”的废液降危减量化处理思路。现场处理结果表明:分类混合废液中汞、铬、铅等一类污染物浓度较工业废液低,经处理后一类污染物均可达标,最终可纳入社区污水处理与再生利用系统深度净化回用或达标纳管排放;采用该工艺可将实验室废液总量减量40%~90%,第三方委托处置成本可降低85%。该工艺与应用案例可为科技园区、研究所或大学的实验室废液处理处置提供参考。

English Abstract

  • 近年来,随着我国教育、科研快速发展,高等院校、科研院所、科技企业或工业园区每年实验室废液产生量快速增长,成为环境污染的重要风险之一[1]。实验室废液污染物组分、浓度与开展的研究工作有关,成分复杂,以其“腐蚀性、爆炸性、高毒性”等危害性而被纳入《国家危险废物名录》。实验室废液有较大的环境风险,且由于污染物种类、含量、性质各异,处理处置困难,目前主要通过暂存或委托具有危险废物处置资质的企业进行废液收集、转运与处置[2]。上述处理处置模式导致科研机构危险废液处置费用逐年增加,难以维系。此外,部分省区危险废物处置能力近乎饱和,且可能由于某些废物处置资质受限问题(如含汞废物)而导致废液长期贮存,产生极大安全隐患。研制高效、可行、稳定的实验室废液减量化处理与达标排放技术和设备,对于创新性解决我国实验室废液污染问题、控制环境风险具有重要意义。

    依据废液理化特性,实验室废液一般可分为无机类废液、有机类废液等[3],具体包括废溶剂、有机废液和重金属-有机复合类的酸/碱废液。其中,高浓度有毒有机废液、重金属-有机物络合物的废液处置极其困难,解决此类废液处理难题的关键在于高毒组分降解/脱毒和多元重金属-有机络合物破络-解络。酸/碱废液常采用扩算渗析回收法[4]、中和法、直接稀释法处理,重金属废液处理方法包括化学沉淀法[5]、铁氧体法[6-7]、电化学法[8]和吸附法[9]等,有机废液处理方法有生物法、高级氧化法[10-12]、溶剂萃取法[13]和焚烧法[14]等。事实上,单一处理方法并不能实现废液稳定处理与达标排放,“分类预处理+物化处理+生化处理”工艺、“螯合-混凝沉淀”方法可使处理出水主要指标达到市政污水纳管排放标准[12-13]。此外,依据《危险废物鉴别标准通则》,实验室废液在处理过程中产生的污泥、残渣仍属于危险废物,处置费用仍相对较高,但前人研究较少考虑处理过程产生的危险废物污泥及其安全处置问题[15]。因此,研究建立实验室废液处理与减量化、达标排放与环境风险控制的技术方法具有重要意义。

  • 本研究以北京市某研究所收置的实验室废液为对象,2018年该研究所外委处置的危险废物近50 t,废液年产量增长率约为15%。结合实验室废液分类管理办法,提出“分类预处理+二级处理+末端吸附”的实验室废液一体化处理与减量化工艺思路,实现处理出水I类污染物浓度达到《水污染物综合排放标准》(DB 11/307-2013)“车间或生产设施废水排放口”的限值要求。废液处理工艺达标出水可纳入社区中水净化与回用系统(图1),实现废液减量化、无害化和资源化,最终系统排放出水COD、氮、磷、重金属等指标可达到北京市《水污染物综合排放标准》(DB 11/307-2013)纳管标准要求。

  • 不同实验室废液依据危险废物标签信息,可大致分为疏水有机溶剂类废液、亲水有机物废液、无机废酸/碱、重金属废液、专项废液等,不同实验室收集的同类废液可混合后进行统一处理。含有I类有机污染物的废液不在此工艺处理范围内。

  • “分类预处理+二级处理+末端吸附”实验室废液一体化降危减量化处理工艺流程如图2所示。以实验室废物标签信息为基础,结合水质快速分析仪,可快速对所收置的废液进行定性分析,不同类别实验室废液采取不同的处置思路。

    疏水有机溶剂废液包括疏水溶剂相和废水相2部分。废液首先通过袋式过滤器除杂,随后进入两相分离器内依据相似相溶原理实现溶剂相和废水相的萃取分层,分层后的疏水溶剂排出系统委托第三方转运处置,也可采取焚烧、湿式氧化等处理单元;废水排入亲水有机物废液的储罐进行后续处理。

    亲水有机物废液含油类、重金属、有机物等污染物。废液首先在袋式过滤器除杂后,随后进入一级反应器完成乳化液破乳、络合态重金属破络/解络、难降解有机污染物氧化等过程,出水废液进入二级反应器进行化学沉淀,之后进入沉淀反应器固液分离去除重金属等I类污染物,产生的污泥经压滤脱水后委外处置,滤液则经袋式过滤器过滤后进入树脂吸附单元进一步去除微量强络合态重金属。

    无机废液主要含强酸、强碱和重金属等污染物,废液与亲水有机废液共用处理单。废液首先经袋式过滤器除杂后,随后进入一级反应器进行重金属破络/解络,出水进入二级反应器进行化学沉淀,然后进入沉淀反应器固液去除重金属等I类污染物,产生的污泥及滤液的处理方法同上。

    专项废液主要是某些组成性质较稳定、数量较大的一类废液。如含氰化物的废液和测COD所用的哈希(HACH)预制试剂。废液与亲水有机废液共用处理单元,首先经袋式过滤器除杂后,废液进入一级反应器进行银离子与汞离子化学沉淀、六价铬还原、氰化物破氰等过程,出水进入二级反应器进行化学沉淀,之后进入沉淀反应器进行固液分离。产生的污泥及滤液处置方法同上。

    根据实验室废液管理和处置特点,废液需分类处理,从而可共用处理单元,减少占地面积,整个系统采取间歇运行模式,利用PLC自动控制确保设备稳定运行。实验室废液成分、含量、性质的复杂性,导致其难以利用在线检测仪器分析数据进行实时设备运行优化,这增大了设备运行操作和参数调控(如反应时间、投药量等参数)的难度。因此,在调试过程中,须确定对污染物去除范围较大、适应性较强、可实现稳定达标的运行参数,作为设备推荐的最优运行参数。最后,整个系统设置末端吸附单元,采用串级有机物吸附树脂、重金属鳌合树脂等,以确保系统出水中汞、镍、铅、钴等重金属浓度达到设计标准要求,然后再纳入社区中水处理系统,经混合后,利用生物处理单元,进一步去除有机物、氮磷等污染物,使废水最终处理回用或排放。

  • 实验室废液降危减量一体化设备设计处理能力为1 t·d−1,所有处理单元置于标准集装箱(长×宽×高= 9 200 mm×2 700 mm×2 400 mm)中。一体化设备包括10个单元。

    1)进液箱1个,有效容积3.5 L,配置1台离心泵。

    2)袋式过滤器2个,配置2台离心泵。

    3)两相分离器1个,配置1台机械搅拌器。

    4)废液储罐3个,有效容积500 L,配置2台流量计和2台离心泵;储罐内设液位传感器。

    5)机械反应器2个,有效容积500 L,配置2台搅拌器;储罐内设pH、ORP和液位传感器。

    6)固液分离反应器1个,配置1台气动隔膜排泥泵,内设上清液溢流储存箱,储罐内设液位传感器。

    7)吸附罐进水预处理器1个,配置2台离心泵。

    8)树脂吸附罐4个,串联连接,配置自动再生反洗。

    9)树脂再生液储罐1个。

    10)板框压滤机1台,板框面积5 m2

  • COD采用快速消解分光光度法测定,Ag、Cd、Cr、Cu、Ni和Pb等重金属浓度采用电感耦合等离子体发射光谱法(ICP-AES)测定,As、Hg等重金属浓度采用电感耦合等离子体-质谱法(ICP-MS)测定,pH、氧化还原电位(Eh)和电导率等指标采用便携式多功能水质测定仪进行测定。

  • 实验室废液降危减量一体化设备经调试后投入3个月试运行(图3)。在试运行过程中,设备稳定,出水I类污染物浓度可稳定达到《北京市水污染物综合排放标准》(DB 11/307-2013)中《车间或生产设施废水排放口标准》的限值要求(见表1)。系统处理出水储存于排水储罐,检测达标后纳入社区中水处理系统。

    表1所示,对比2个批次实验室废液进、出水水质,可以看出,混合废液酸性较强,中和用碱量较大;在总Cr、Ag2+、Cd2+、Cu2+、Hg2+和Pb2+等重金属指标中,废液混合后浓度最高的I类污染物为总Cr,浓度为336 mg·L−1。对比而言,实验室废液中重金属浓度远低于传统工业危险废液,其重金属含量一般在0.1%以上。上述结果表明,对实验室废液首先开展产废园区的内减量化处理与环境风险控制,然后再将所产生的残渣委托第三方危险废物处置企业进行最终处置,这对于降低产废单位处置成本和减轻第三方危废处置企业负荷是可行的。

  • 疏水有机溶剂类废液含水率为20%~50%,波动较大。在亲水性有机废液处理过程中,投加各类药剂溶液体积约占废液总体积的10%,且Fenton氧化过程污泥产量较大,压滤后污泥含水率约50%,为原废液体积10%左右。在无机废液处理过程中,投加各类药剂溶液体积约为废液总体积的10%,污泥产量约为废液体积的5%(含水率50%)。综上分析可知,通过处理后,疏水性有机废液可减量50%~80%,亲水性有机废液和无机废液可减量90%。实验室废液减量化处置过程中物料衡算如图4所示。

  • 该装置运行成本主要包括电费、药剂费和污泥外委处置费等,其中污泥与废液的委托处置费接近。采用实验室废液降危减量一体化装置,1 t亲水性有机废液和无机废液处理时间约为8 h,处置成本较委托处置降低85%。这对于产废单位降低废液处置成本、确保危废安全无害化处置、控制环境风险具有重要意义。

  • 1)实验室废液混合后重金属等I类污染物浓度较传统工业危险废液低。对实验室废液采取减量化处理,有机溶剂、含I类有污物废液及处理后的污泥等交由第三方危险废物处置企业处置,可显著降低产废单位的处置成本,或可减少第三方处置企业的处理压力。

    2)“分类预处理+二级处理+末端吸附”的废液降危减量一体化处理工艺可实现I类重金属污染物稳定达到生产设施排放口标准,可有效控制实验室废液的环境风险。

    3)相对于直接委托处置,直接减量化处置综合成本降低85%,具有很好的经济效益和环境效益。

参考文献 (15)

返回顶部

目录

/

返回文章
返回