[1] |
夏兆辉, 孙婧, 董滨. 强化污泥厌氧消化产甲烷新技术研究进展[J]. 广东化工, 2018, 45(1): 72-74. doi: 10.3969/j.issn.1007-1865.2018.01.035
|
[2] |
FONOLL X, ASTALS S, DOSTA J, et al. Anaerobic co-digestion of sewage sludge and fruit wastes: Evaluation of the transitory states when the co-substrate is changed[J]. Chemical Engineering Journal, 2015, 262: 1268-1274. doi: 10.1016/j.cej.2014.10.045
|
[3] |
LIANG Y G, LI X J, ZHANG J, et al. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure[J]. Environmental Science and Pollution Research, 2017, 24(13): 12328-12337. doi: 10.1007/s11356-017-8832-9
|
[4] |
ALAGOZ B A, YENIGUN O, ERDINCLER A. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment[J]. Waste Management, 2015, 46: 182-188. doi: 10.1016/j.wasman.2015.08.020
|
[5] |
中华人民共和国国家统计局. 中国统计年鉴(2016)[M]. 北京: 中国统计出版社, 2016.
|
[6] |
程澄, 卢加伟, 廖利. ArcGIS在环境园详细规划中的应用[J]. 环境卫生工程, 2011, 19(5): 53-56. doi: 10.3969/j.issn.1005-8206.2011.05.020
|
[7] |
CAPORGNO M P, TROBAJO R, CAIOLA N, et al. Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions[J]. Renewable Energy, 2015, 75: 374-380. doi: 10.1016/j.renene.2014.10.019
|
[8] |
李进, 刘宗宽, 贺延龄. 城市生活垃圾焚烧厂渗滤液产甲烷潜力[J]. 环境工程学报, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196
|
[9] |
杨世东, 陶文鑫, 崔鑫鑫, 等. 海绵铁缓解污水厌氧氨氧化反应器中硝酸盐积累的效果[J]. 农业工程学报, 2018, 34(22): 185-190. doi: 10.11975/j.issn.1002-6819.2018.22.023
|
[10] |
马健伟, 任淑鹏, 宋亚瑞, 等. 零价铁技术在废水处理领域的应用研究进展[J]. 化学通报, 2019, 82(1): 3-11.
|
[11] |
LIU Y, WANG J L. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review[J]. Science of the Total Environment, 2019, 671: 388-403. doi: 10.1016/j.scitotenv.2019.03.317
|
[12] |
HAN S, HUANG Y H, LIU Z. Bacterial indicator reduction in dairy manure using hybrid zero-valent iron (h-ZVI) system[J]. Environmental Science and Pollution Research, 2019, 26(11): 10790-10799. doi: 10.1007/s11356-019-04501-x
|
[13] |
CHOKEJAROENRAT C, SAKULTHAEW C, ANGKAEW A, et al. Remediating sulfadimethoxine-contaminated aquaculture wastewater using ZVI-activated persulfate in a flow-through system[J]. Aquacultural Engineering, 2019, 84: 99-105. doi: 10.1016/j.aquaeng.2018.12.004
|
[14] |
董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204-212. doi: 10.11975/j.issn.1002-6819.2016.15.028
|
[15] |
李小兰, 周芸, 陈志燕, 等. 针铁矿强化剩余污泥与烟草废弃物厌氧发酵的研究[J]. 中国环境科学, 2019, 39(6): 2475-2482. doi: 10.3969/j.issn.1000-6923.2019.06.030
|
[16] |
FERRY J G. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1): 13-38. doi: 10.1111/j.1574-6976.1999.tb00390.x
|
[17] |
中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 北京: 中国标准出版社, 2005.
|
[18] |
国家环境保护总局. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2007.
|
[19] |
中华人民共和国环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京: 中国环境科学出版社, 2009.
|
[20] |
国家技术监督局. 水质 总磷的测定 钼酸铵分光光度法: GB 11893-1989[S]. 北京: 中国标准出版社, 1989.
|
[21] |
国家环境保护局. 水质 铁的测定 邻菲罗啉分光光度法: HJ/T 345-2007[S]. 北京: 中国环境科学出版社, 2007.
|
[22] |
孟旭升. 零价铁强化厌氧丙酸转化乙酸过程的研究[D]. 大连: 大连理工大学, 2013.
|
[23] |
LIU Y C, WHITMAN W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125: 171-189. doi: 10.1196/annals.1419.019
|
[24] |
SIRIWONGRUNGSON V, ZENY R J, ANGELIDAKI I. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis[J]. Water Research, 2007, 41(18): 4204-4210. doi: 10.1016/j.watres.2007.05.037
|
[25] |
ZHANG M, HE F, ZHAO D Y, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter[J]. Water Research, 2011, 45(7): 2401-2414. doi: 10.1016/j.watres.2011.01.028
|
[26] |
HE F, ZHAO D Y, PAUL C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones[J]. Water Research, 2010, 44(7): 2360-2370. doi: 10.1016/j.watres.2009.12.041
|
[27] |
冯应鸿. 零价铁强化剩余污泥厌氧消化的研究[D]. 大连: 大连理工大学, 2014.
|
[28] |
郝晓地, 魏静, 曹达啟. 废铁屑强化污泥厌氧消化产甲烷可行性分析[J]. 环境科学学报, 2016, 36(8): 2730-2740.
|
[29] |
LIU R B, HAO X D, WEI J. Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[J]. Chemical Engineering Journal, 2016, 284: 1196-1203. doi: 10.1016/j.cej.2015.09.081
|
[30] |
唐波. 盐分和氨氮在餐厨垃圾干式厌氧消化系统中的积累及其对产气的影响分析[D]. 重庆: 重庆大学, 2015.
|
[31] |
KJELDSEN P, BARLAZ M A, ROOKER A P, et al. Present and long-term composition of MSW landfill leachate: A review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297-336. doi: 10.1080/10643380290813462
|
[32] |
CHOU H, HUANG J C, CHEN W G, et al. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters[J]. Bioresource Technology, 2008, 99(17): 8061-8067. doi: 10.1016/j.biortech.2008.03.044
|
[33] |
HANSEN K H, ANGELIDAKI I, AHRING B K. Improving thermophilic anaerobic digestion of swine manure[J]. Water Research, 1999, 33(8): 1805-1810. doi: 10.1016/S0043-1354(98)00410-2
|
[34] |
KARRI S, SIERRA-ALVAREZ R, FIELD J A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge[J]. Biotechnology and Bioengineering, 2005, 92(7): 810-819. doi: 10.1002/bit.20623
|
[35] |
LIU Y W, ZHANG Y B, NI B J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors[J]. Water Research, 2015, 75: 292-300. doi: 10.1016/j.watres.2015.02.056
|
[36] |
牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438.
|
[37] |
HU Y S, HAO X D, ZHAO D, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J]. Chemosphere, 2015, 140: 34-39. doi: 10.1016/j.chemosphere.2014.10.022
|
[38] |
NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405(6782): 94-97. doi: 10.1038/35011098
|
[39] |
PUYOL D, FLORES-ALSINA X, SEGURA Y, et al. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process[J]. Chemical Engineering Journal, 2018, 335: 703-711. doi: 10.1016/j.cej.2017.11.029
|