纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复

张颖, 张磊, 李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
引用本文: 张颖, 张磊, 李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
ZHANG Ying, ZHANG Lei, LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
Citation: ZHANG Ying, ZHANG Lei, LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187

纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复

    作者简介: 张颖(1993—),女,硕士、助教。研究方向:水污染控制理论与技术。E-mail:1793596841@qq.com
    通讯作者: 张磊(1983—),男,博士、副教授。研究方向:环境微生物。E-mail:leizhang2014@163.com
  • 基金项目:
    国家自然科学基金资助项目(41601573);安徽省高校自然科学研究重点项目(KJ2019A0641);安徽省公益性技术应用研究联动计划项目(1704f0804053);安徽省科技创新战略与软科学研究专项(1706a02020048)
  • 中图分类号: X703

Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB

    Corresponding author: ZHANG Lei, leizhang2014@163.com
  • 摘要: 为使北京某地区地下水中超标污染物F、Cr(Ⅵ)、Cr(Ⅲ)、SO24等离子得到有效处理,基于微生物固定化技术,将所合成的纳米ZrO2-聚丙烯酰胺杂化材料作为包埋剂,对硫酸盐还原菌(SRB)进行固定化处理形成纳米ZrO2-SRB颗粒,通过单因素实验优化了纳米ZrO2-SRB颗粒对污染地下水的最佳反应条件。结果表明:当SRB投加量为35%、杂化材料投加量为300 mL、温度为35 ℃时,对地下水中F、Cr(Ⅵ)、Cr(Ⅲ)、SO24的去除率分别为92.4%、99.8%、99.7%、70.4%。还原和吸附动力学拟合结果表明:SRB对Cr(Ⅵ)、SO24的还原过程符合一级还原动力学;杂化材料对F-、Cr(Ⅵ)、Cr(Ⅲ)、SO24的吸附过程符合二级吸附动力学。以上结果为处理铬和氟污染地下水提供重要的参考依据。
  • 市政污泥是城市污水处理过程中不可避免的副产物,其含水率高、有机质含量高、成分复杂,并且含有大量的寄生虫卵、病原微生物和一定量的重金属[1]。近年来,市政污泥的产量也在不断增加,预计2025年我国污泥年产量将突破9×107 t,污泥处理处置已成为一项亟待解决的难题[2]。污泥的主要处置方式包括卫生填埋、农业利用、干化焚烧、建筑材料利用等,我国较大部分污泥采用填埋方式,约占我国污泥总处置量的65%[3]

    由于我国早期污水处理厂存在着“重水轻泥”的现象,导致已填埋污泥的含水率过高,力学性质较差。而填埋场的库容有限,随着污泥产量的逐年增加,目前国内许多城市的填埋场,例如上海老港、成都长安、深圳下坪、杭州天子岭的填埋场的库容已经严重不足[4-5],为此,许多填埋场要求将填埋污泥的含水率从80%降低至60%以下,这样可以增加至少50%的填埋库容[6]。但是,由于污泥有机质含量高、结合水含量高、亲水性强,单一的机械处理很难将污泥含水率降低至60%以下,需结合一定的预处理方法将污泥的胞外聚合物(EPS)破解,释放出自由水后再进行脱水减量处理[7]。当前填埋污泥的深度脱水通常采用“化学调理+板框压滤”的方法[8],该方法需将污泥从填埋库中挖出,运输到指定场地后再进行处理,存在着成本高、易对环境造成二次污染的问题,因此,需寻找一种高效、环保的污泥原位处理方法。

    真空预压法具有施工工艺简单、成本低等优点,是软土地基原位处理的一种有效方法[9-11]。近年来,将化学预调理与真空预压相结合的工艺已逐渐被应用于填埋污泥原位处理[3,8,12-16],该工艺在一定程度上能够实现污泥的原位减量,但是仍存在易产生臭气污染、难以保证药剂调理均匀等问题。为了寻找更加环保高效的填埋污泥原位处理方法,有研究者提出了冻融联合真空预压填埋污泥原位处理技术[17-18]。冻融的原理是污泥被冷冻时,冷冻过程中不断生长的冰晶会破坏污泥细胞膜的完整性,使细胞脱水、收缩或溶解,使胞外聚合物释放到上清液中[19];同时,冻融后污泥中小颗粒团聚成大颗粒,能显著提高污泥的脱水性能,而且冻融循环可显著提高污泥的渗透系数[20-21]

    有研究表明,采用冻融联合真空预压法处理填埋污泥时,在出水量、出水速率、沉降量、减量比、含水率均优于药剂预调理方法[18],但其在实验过程中并没有使用实际真空预压过程中的塑料排水板;塑料排水板作为真空预压的负压传递通道和排水通道,其性能对真空固结效率和效果有着显著影响[22]。根据芯板与滤膜的复合方式不同,目前工程界常采用分离式和整体式2种塑料排水板,在普通土体真空预压中,已有这2种排水板类型的对比研究[10, 23-24]。但是,污泥作为一种胶体状生物固体,其工程性质显著不同于软土和吹填土,但目前鲜有考察不同排水板类型对填埋污泥真空固结效果的研究。

    本研究开展了不同排水板类型填埋污泥冻融-真空对比研究。首先,对填埋污泥进行冻融预处理;随后进行室内真空预压模型实验,分别设置分离式排水板(SPVD)与整体式排水板(IPVD)对照组;最后,通过对比出水量、减量比、含水率等数据,探究该法处理填埋污泥的宏观效果,并且通过压汞、电镜扫描等微观实验,探究冻融后污泥在真空预压过程中微观结构变化特性。

    供试污泥取自上海市某污泥填埋库区,污泥填埋龄期约为12 a,占用了大量土地和地下空间,亟需对填埋库中的污泥进行原位脱水减量处理。填埋污泥的基本物理性质如表1所示。可以看出,填埋污泥含水率高,有机质含量比新鲜污泥(60%左右)有所降低。这是因为,填埋污泥受填埋龄期及厌氧消化影响,发生了一定程度的降解。填埋污泥的液塑限较大,按照细粒土的分类应为高液限有机质粉土。

    表 1  污泥基本物理指标
    Table 1.  Basic physical indexes of sludge
    比重含水率/%密度/(g·cm−3)有机质/%液限/%塑限/%
    1.8861.1340184111
     | Show Table
    DownLoad: CSV

    采用Mastersize2000激光粒度仪对原状填埋污泥及冻融后污泥进行了粒度分布测试,粒径分布曲线如图1所示。原状污泥d90为169.5 μm、d50为47.28 μm,而冻融后污泥d90为241.6 μm、d50为65.68 μm,经冻融后,污泥颗粒粒径显著增大。这主要是因为:在冻结过程中,污泥中的小颗粒被不断生长的冰晶推挤压密,污泥小颗粒团聚为大颗粒,显著提高了其脱水沉降能力。

    图 1  原状污泥与冻融后污泥颗粒粒径分布曲线
    Figure 1.  Particle size distribution curve of original sludge and sludge after freeze-thaw

    真空预压实验装置由真空泵、抽滤瓶、排水板和模型箱组成,具体如图2所示。模型箱由有机玻璃桶及密封盖组成,玻璃桶高500 mm、外径320 mm、内径300 mm,密封盖为20 mm厚的有机玻璃盖板。分别采用如图3所示的分离式排水板和整体式排水板,排水板通过土工布与排水管绑扎。分离式排水板属于分体式十字型塑料排水板,排水板滤膜包裹在塑料芯板的外侧,与芯板不黏接,滤膜被制作成略大于芯板尺寸的土工织布常套包裹于芯板四周,滤膜等效孔径为75 μm;整体式排水板芯板与滤膜通过热合紧贴在一起,两者间不可作相对移动,滤膜等效孔径为120 μm。

    图 2  径向真空预压模型箱示意图
    Figure 2.  Schematic diagram of radial vacuum preloading model box
    图 3  不同类型排水板实物图
    Figure 3.  Physical drawing of different types of plastic drainage boards

    采用冰柜对污泥进行冻融处理,冻结温度设置为−15 ℃,待达到冻结温度后将污泥取出于室温(22 ℃)融化。每个模型箱污泥用量为约16 kg。整个实验期间真空度保持在85 kPa左右,实验过程中对累计出水量、累计沉降量以及真空度进行监测记录,实验完成后对模型箱内污泥取样测定含水率及取样进行压汞、电镜扫描微观测试。

    由累计出水量变化曲线(图4)可以看出,分离式排水板和整体式排水板两者最终出水量差别不大。整体式排水板的最终出水量为8 830 mL,而分离式排水板的最终出水量为8640 mL,二者仅相差190 mL。在实验初期,分离式排水板与整体式排水板的出水速率都很高,在前4 h的出水量可达总出水量的70%以上。这可能是因为污泥经冻融后,污泥细胞内外不断生长的冰晶使得污泥细胞破裂,导致污泥细胞膜的完整性被破坏,EPS被破解,从而释放细胞内外的物质,导致污泥絮体结构被破坏,释放出大量的结合水和间隙水,进而大幅提高了污泥的脱水性能[19]。冻融后污泥中含有大量的自由水,这导致前期出水速率及出水量都很高。

    图 4  不同排水板类型累积出水量变化曲线
    Figure 4.  Change curve of cumulative water discharge of different PVD types

    在前4 h,分离式排水板的累计出水量达7 050 mL,占总出水量的81.5%,而后出水速率突然变缓,后139 h的出水量仅为1 590 mL;而整体式排水板在前4 h累计出水量为6 410 mL,后139 h的出水量为2 420 mL。造成后期出水量差异的可能原因为,分离式排水板的等效滤膜孔径为75 μm,而整体式排水板的滤膜孔径为120 μm,在真空排水固结前期,渗流通道尚未形成,污泥颗粒在真空负压及孔隙水压力的作用下不断向排水板附近运移,由于分离式排水板等效滤膜孔径过小,部分细小颗粒未能穿过滤膜,从而影响排水板附近的渗流通道的通畅性,造成一定的淤堵。这也与已有研究[10, 25]的结果一致。但由于冻融后污泥颗粒粒径增大,小颗粒含量少,只造成部分淤堵,大部分排水通道仍保持通畅,所以二者最终出水量差异不大。

    由累计沉降量变化曲线(图5)可以看出,冻融污泥原始高度为20.5 cm,分离式排水板的最终高度为7.8 cm,整体式排水板的最终高度为8.55 cm,二者均下降50%以上。污泥在冻融时,污泥颗粒被不断生长的冰晶推挤压密,污泥小颗粒得以团聚为大颗粒,并显著提高了大中孔隙的分布,在真空预压固结时显著提高了其渗透固结性,从而提高了污泥的固结度。与分离式排水板相比,整体式排水板的高度变化却相对较小。这可能是因为:本次实验高度测量仅取实验模型箱两侧高度变化平均值记录,而取样后发现,整体式排水板处理后污泥在侧壁附近发生了1 cm左右的径向收缩,若考虑径向收缩的变化来计算实验后污泥体积,则分离式排水板污泥的最终体积为5 510 cm3,而整体式排水板最终体积为5 262 cm3,相比分离式排水板体积变化更大,这也与累计出水量变化规律相互印证。而整体式排水板最终出现了径向收缩现象,径向收缩是因为在真空排水固结过程中,在排水板远端的土颗粒在水力梯度的作用下不断向排水板中心处运移[26]。这也说明采用整体式排水板后冻融污泥整体的排水固结效果较好,整体渗流通道顺畅,真空负压影响范围可覆盖到远端土体,污泥整体固结度较好。

    图 5  不同排水板类型累积沉降量变化曲线
    Figure 5.  Variation curve of cumulative settlement of different PVD types

    经计算,两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%。这表明整体式排水板减量比略优于分离式排水板,冻融联合真空预压法可有效实现填埋污泥的原位减量。

    实验结束后,从排水板中心处开始,沿径向在0、15、30 cm处取污泥上、中、下3个位置,每个位置取3个样对照,测定不同位置处的含水率,结果如图6所示。

    图 6  不同排水板类型含水率变化
    Figure 6.  Change of water content of different PVD types

    1) 原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%。

    2) 沿半径方向污泥整体含水率分布呈现出逐渐增加的变化规律。径向上的差异主要是由于:离开排水板中心的距离和水力梯度的差异,排水板附近水力梯度大,水更容易渗流排出,而距离排水板较远处水力梯度小,水不易排出,所以靠近排水板中心处含水率更低。

    3) 沿深度方向呈现出上部含水率低、底部含水率高的分布规律。这是因为:真空负压强度沿着排水板衰减,排水板周围土体水力梯度逐渐减小,对排水板的影响范围逐渐减小,影响范围沿着排水板呈现出倒锥形逐渐减小的趋势[24],这导致上部由于真空负压强度高,水力梯度大,水容易排出,而底部由于真空强度衰减,水力梯度减小,故形成底部含水率高、上部含水率低的分布规律。

    4) 整体式排水板上部含水率在60%左右分布,中部在65%左右分布,底部在70%左右分布;而分离式排水板的上、中、下部均在65%~70%左右分布。可见,整体式排水板的整体处理效果更好,且靠近上、中部含水率明显优于分离式排水板。这可能是因为:一方面,分离式排水板滤膜孔径较小,易造成小颗粒淤堵,从而影响排水固结效果;另一方面,由于分离式排水板芯板是内包于滤膜的,在土体压力下不可避免地出现滤膜“陷入”排水通道的情况,从而减少排水面积,而整体式排水板滤膜是胶结于芯板竖齿上的,滤膜始终是“紧绷”状态,在土体压力下变形较小[27],从而造成含水率分布的差异。

    实验结束后,分别在整体式排水板、分离式排水板模型箱中心位置处取样进行压汞(MIP)实验,分析不同冻结条件下冻融污泥径向真空排水的固结孔径的大小分布规律,结果如图7图8所示。

    图 7  不同排水板类型孔径分布变化曲线
    Figure 7.  Pore size distribution curves of different PVD types
    图 8  不同排水板类型孔径大小变化
    Figure 8.  Percentage change of pores with different sizes under different PVD types

    整体式排水板与分离式排水板孔径分布有明显差异:分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。其原因是,在真空预压过程中,真空度不断向污泥深度处传递,并以排水板为中心的径向上形成真空负压梯度,在该真空负压梯度的作用下形成真空渗流场[28]。排板周围土体首先开始渗流出水,孔隙水在负压的作用下不断向排水板方向渗流,而此时污泥中的细小颗粒也在渗流力的作用下不断向排水板中心运移,使得排水板附近土体渗透系数不断降低,使排水板中心处的土体首先发生径向固结,土体发生压缩。

    污泥经冻融后,污泥大中孔隙数量分布大幅度提高,小、微孔隙数量减少;而在真空排水固结时,较大孔隙先被压缩成较小孔隙,较小孔隙后被压缩[29]。整体式排水板由于不易淤堵,在真空排水固结时渗流通道顺畅,固结程度高,大、中孔隙先不断被压缩为小孔隙,而后小孔隙被压缩为更小的介孔;而分离式排水板由于发生了部分淤堵,从而导致排水板中心处污泥固结程度对比整体式排水板低,主要以大、中孔隙压缩为小孔为主。这也与含水率分布规律互相印证,即整体式排水板由于固结程度高,在贴近排水板处污泥含水率低于分离式排水板。

    实验完成后,对不同排水板径向真空排水固结后靠近排水管中心处的污泥取微观样进行电镜扫描实验(SEM),观察其微观结构特性,如图9所示。可以看出,整体式排水板与分离式排水板真空排水固结后污泥整体结构致密均匀,呈现出有规律的网状结构。但整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。这也与MIP实验结果相印证。

    图 9  不同排水板类型电镜扫描图
    Figure 9.  SEM diagram of different PVD types

    1)分离式排水板和整体式排水板两者的最终出水量差别不大。两种不同类型排水板的最终减量比均在60%以上,整体式排水板的减量比为63.6%,分离式排水板的减量比为61.9%,整体式排水板减量比略优于分离式排水板。

    2)原始污泥含水率为86%,经冻融联合真空预压处理后,其含水率大幅度下降,含水率最低可降至59.5%,符合我国填埋污泥的规范要求;其中,整体式排水板的整体处理效果更好。沿半径方向,污泥整体含水率分布呈现出逐渐增加的变化规律;沿深度方向,呈现出上部含水率低,底部含水率高的分布规律。

    3)整体式排水板与分离式排水板孔径分布具有明显差异。分离式排水板主要以小孔分布为主,即以团粒内孔隙分布为主;而整体式排水板主要以微孔和介孔分布为主,即以颗粒间孔隙为主。整体式排水板对比分离式排水板结构更加致密,固结程度高,以颗粒间孔隙分布为主;而分离式排水板固结程度低,孔径相对更大,以团粒内孔隙为主。

  • 图 1  SRB投加量对各污染物去除的影响

    Figure 1.  Effect of SRB dosage on the pollutants removal

    图 2  杂化材料投加量对污染物去除的影响

    Figure 2.  Effect of the dosages of hybrid materials on pollutants removal

    图 3  反应温度对污染物去除的影响

    Figure 3.  Effect of reaction temperature on pollutants removal

    图 4  纳米ZrO2-聚丙烯酰胺杂化材料特性分析

    Figure 4.  Analysis of the properties of nano-ZrO2- polyacrylamide hybrid materials

    图 5  SRB的特性分析

    Figure 5.  Characteristic analysis of SRB

    图 6  纳米ZrO2-SRB颗粒特性分析

    Figure 6.  Characteristic analysis of nano-ZrO2-SRB particles

    图 7  纳米ZrO2-SRB处理污染水后的颗粒特性分析

    Figure 7.  Analysis of the characteristics of nano-ZrO2-SRB after polluted water treatment

    表 1  还原动力学拟合结果

    Table 1.  Fitting results of reduction kinetics

    离子类型拟合类型离子浓度/(mg·L−1)速率常数/(mg·(L·h)−1)R2
    Cr(Ⅵ)零级100.093 450.903 2
    一级100.051 050.994 5
    SO24零级5001.324 170.939 7
    一级5000.004 070.994 3
    离子类型拟合类型离子浓度/(mg·L−1)速率常数/(mg·(L·h)−1)R2
    Cr(Ⅵ)零级100.093 450.903 2
    一级100.051 050.994 5
    SO24零级5001.324 170.939 7
    一级5000.004 070.994 3
    下载: 导出CSV

    表 2  吸附动力学拟合结果

    Table 2.  Fitting results of adsorption kinetics

    离子类型拟合类型离子浓度/(mg·L−1)R2k/(g·(mg·min)−1)
    Cr(Ⅵ)一级100.891 90.299 2
    二级100.999 49.131 6
    Cr(Ⅲ)一级100.800 10.251 7
    二级100.999 58.327 0
    F一级50.958 90.184 7
    二级50.999 416.134 3
    SO24一级5000.844 50.553 5
    二级5000.999 60.363 0
    离子类型拟合类型离子浓度/(mg·L−1)R2k/(g·(mg·min)−1)
    Cr(Ⅵ)一级100.891 90.299 2
    二级100.999 49.131 6
    Cr(Ⅲ)一级100.800 10.251 7
    二级100.999 58.327 0
    F一级50.958 90.184 7
    二级50.999 416.134 3
    SO24一级5000.844 50.553 5
    二级5000.999 60.363 0
    下载: 导出CSV
  • [1] 陆刚. 破解工业废水排污技术发展之困[J]. 乙醛醋酸化工, 2014, 30(8): 34-38.
    [2] 蔡荣华, 高春娟, 张家凯, 等. 冶金废水资源及其利用[J]. 盐业与化工, 2013, 42(6): 1-3.
    [3] FENG L F, QI W. Removal of heavy metal ions from wastewaters[J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011
    [4] 王华林. 有机聚合物/SiO2有机无机杂化材料的研究[D]. 合肥: 合肥工业大学, 2006.
    [5] PRATHIK R, ARUN P P, LIANG C T, et al. Synthesis of graphene-Zn O-Au nanocomposites for efficient reduction of nitrobenzene[J]. Environmental Science & Technology, 2012, 47: 6688-6695.
    [6] LIU W, NI J R, YIN X C. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes[J]. Water Research, 2013, 53: 12-25.
    [7] 涂玉波, 邓志成, 刘娅, 等. 无机-有机杂化絮凝剂在陶瓷废水处理中的应用[J]. 陶瓷, 2018, 36(13): 92-96.
    [8] YANG G Z, WANG Q, DENG H L, et al. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange[J]. Advanced Materials Interfaces, 2014, 6: 3008-3015. doi: 10.1021/am405607h
    [9] SNEH A P, ARAG D P, GIRIDHAR A M. Photocatalytic activity of combustion synthesized ZrO2 and ZrO2-TiO2 mixed oxides[J]. Industrial & Engineering Chemistry Research, 2011, 50: 12915-12924.
    [10] 邱迅. 基于二氧化硅的有机/无机杂化材料及其在重金属废水处理中的应用[D]. 苏州: 苏州大学, 2016.
    [11] 尚成江. 核-壳有机/无机杂化材料的制备及其在重金属废水处理中的应用[D]. 郑州: 郑州大学, 2015.
    [12] BARRER A, DIAZ C E, LUGO-LUGO V. A review of chemical, electrochemical and biological methods for Cr(VI) reduction[J]. Journal of Hazardous Material, 2012, 119(1): 1-12.
    [13] PAGNANELLI F, VIGGI C C, CIBATI A, et al. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethano[J]. Journal of Hazardous Material, 2012, 199-200: 186-192. doi: 10.1016/j.jhazmat.2011.10.082
    [14] TSUKAMOTO T K, KILLION H A, MILLIER G C. Column experiments for microbiological treatment of acid mine drainage: Low-temperature, low-pH and matrix investigations[J]. Water Research, 2004, 38(6): 1405-1418. doi: 10.1016/j.watres.2003.12.012
    [15] 张佳雯. 乙醇驯化硫酸盐还原菌处理高浓度含铬废水研究[D]. 阜新: 辽宁工程技术大学, 2017.
    [16] 董慧, 张瑞雪, 吴攀, 等. 利用硫酸盐还原菌去除矿山废水中污染物试验研究[J]. 水处理技术, 2012, 38(5): 31-35. doi: 10.3969/j.issn.1000-3770.2012.05.008
    [17] 周彩华, 何超, 胡行方, 等. 氧氯化锆前驱体氧化锆溶胶的制备与研究[J]. 玻璃与搪瓷, 2001, 29(4): 41-44. doi: 10.3969/j.issn.1000-2871.2001.04.008
    [18] 王国祥. 聚丙烯酰胺/二氧化钛杂化材料的合成与表征[J]. 化学工业与工程技术, 2008, 8(10): 30-37.
    [19] 朱文杰. Leucobacter sp. CRB1菌还原铬(VI)的机理及其在铬渣解毒中的应用[D]. 长沙: 中南大学, 2007.
    [20] MIAO Z Y, HE H, TAN T, et al. Biotreat-ment of Mn2+ and Pb2+ with sulfate-reducing bacterium desulfuromonas alkenivorans S-7[J]. Journal of Environmental Engineering, 2018, 144(3): 112-116.
    [21] LEFTICARIU L, WALTERS E R, PUGH C W, et al. Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated mine drainage: Field experiments[J]. Applied Geochemistry, 2015, 63: 70-82. doi: 10.1016/j.apgeochem.2015.08.002
    [22] 徐卫华, 刘云国, 曾光明, 等. 硫酸盐还原菌及其还原解毒Cr(VI)的研究进展[J]. 微生物学通报, 2009, 37(7): 1040-1045.
    [23] 陈港, 俞铁明, 夏庆根, 等. 新型改性高岭土体系增强剂的研究[J]. 中国造纸, 2004, 26(15): 27-31.
    [24] 狄军贞, 王明昕, 赵微, 等. 麦饭石固定化SRB污泥颗粒处理模拟煤矿酸性废水的适应性[J]. 环境工程学报, 2017, 11(7): 3985-3990. doi: 10.12030/j.cjee.201604140
    [25] 安文博, 王来贵, 狄军贞. 生铁屑固定化硫酸盐还原菌颗粒特性实验分析[J]. 非金属矿, 2017, 16(4): 8-11. doi: 10.3969/j.issn.1000-8098.2017.04.003
    [26] PAN X H, LIU Z J, CHEN Z, et al. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633[J]. Water Research, 2014, 55: 21-29. doi: 10.1016/j.watres.2014.01.066
    [27] 戴丹丹. 氯胺嘧草醚在土壤中的吸附、淋溶和降解特性研究[D]. 杭州: 浙江工业大学, 2017.
    [28] 殷齐贺. 膨润土负载纳米零价铁去除废水中Cd(Ⅱ)的研究[J]. 福建质量管理, 2017, 42(13): 151-152. doi: 10.3969/j.issn.1673-9604.2017.13.127
  • 期刊类型引用(3)

    1. 张颖,韩润泽,徐昆,梅才华. 纳米氧化锆-FA复合材料处理含Cr(Ⅲ)废水试验研究. 湖南城市学院学报(自然科学版). 2023(02): 73-78 . 百度学术
    2. 唐佳伟,张锁,刘兆峰,张海琴,包一翔,侯福林,郭强,曹志国,李井峰. 吸附法去除矿井水中F~-研究进展. 煤炭科学技术. 2023(05): 269-283 . 百度学术
    3. 张颖,程千瑞,张磊,李喜林,李致格. 响应曲面法对杂化材料-SRB处理铬和氟地下水优化研究. 四川轻化工大学学报(自然科学版). 2020(04): 22-28 . 百度学术

    其他类型引用(2)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.5 %DOWNLOAD: 4.5 %HTML全文: 84.8 %HTML全文: 84.8 %摘要: 10.8 %摘要: 10.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 77.8 %其他: 77.8 %Anwo: 0.1 %Anwo: 0.1 %Ashburn: 0.3 %Ashburn: 0.3 %Beijing: 8.8 %Beijing: 8.8 %Bengaluru: 0.4 %Bengaluru: 0.4 %Carbondale: 0.2 %Carbondale: 0.2 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.4 %Changsha: 0.4 %Chongqing: 0.3 %Chongqing: 0.3 %Delhi: 0.4 %Delhi: 0.4 %Dongguan: 0.1 %Dongguan: 0.1 %Foshan: 0.1 %Foshan: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 0.8 %Guangzhou: 0.8 %Gulan: 0.1 %Gulan: 0.1 %Haidian: 0.1 %Haidian: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Jinrongjie: 0.7 %Jinrongjie: 0.7 %Kaohsiung City: 0.2 %Kaohsiung City: 0.2 %Kunshan: 0.2 %Kunshan: 0.2 %Mountain View: 0.1 %Mountain View: 0.1 %Newark: 0.2 %Newark: 0.2 %Ningbo: 0.1 %Ningbo: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Qingyuan: 0.9 %Qingyuan: 0.9 %Rongcheng: 0.1 %Rongcheng: 0.1 %Shanghai: 0.7 %Shanghai: 0.7 %Shantou: 0.1 %Shantou: 0.1 %Shenzhen: 0.2 %Shenzhen: 0.2 %Suzhou: 0.2 %Suzhou: 0.2 %Taiyuan: 0.3 %Taiyuan: 0.3 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %Tianjin: 0.3 %Tianjin: 0.3 %Wuhan: 0.2 %Wuhan: 0.2 %Wuxi: 0.2 %Wuxi: 0.2 %Xi'an: 0.1 %Xi'an: 0.1 %Xiangtan: 0.1 %Xiangtan: 0.1 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 3.7 %XX: 3.7 %Yantai: 0.1 %Yantai: 0.1 %Yuncheng: 0.2 %Yuncheng: 0.2 %Zhengzhou: 0.3 %Zhengzhou: 0.3 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.2 %北京: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %其他AnwoAshburnBeijingBengaluruCarbondaleChang'anChangshaChongqingDelhiDongguanFoshanGaochengGuangzhouGulanHaidianHangzhouJinrongjieKaohsiung CityKunshanMountain ViewNewarkNingboQingdaoQingyuanRongchengShanghaiShantouShenzhenSuzhouTaiyuanTaiyuanshiTianjinWuhanWuxiXi'anXiangtanXuzhouXXYantaiYunchengZhengzhou内网IP北京济南深圳Highcharts.com
图( 7) 表( 2)
计量
  • 文章访问数:  4199
  • HTML全文浏览数:  4199
  • PDF下载数:  77
  • 施引文献:  5
出版历程
  • 收稿日期:  2019-07-31
  • 录用日期:  2019-10-13
  • 刊出日期:  2020-05-01
张颖, 张磊, 李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
引用本文: 张颖, 张磊, 李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
ZHANG Ying, ZHANG Lei, LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187
Citation: ZHANG Ying, ZHANG Lei, LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1170-1179. doi: 10.12030/j.cjee.201907187

纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复

    通讯作者: 张磊(1983—),男,博士、副教授。研究方向:环境微生物。E-mail:leizhang2014@163.com
    作者简介: 张颖(1993—),女,硕士、助教。研究方向:水污染控制理论与技术。E-mail:1793596841@qq.com
  • 1. 滁州学院土木与建筑工程学院,滁州 239000
  • 2. 辽宁工程技术大学土木工程学院,阜新 123000
基金项目:
国家自然科学基金资助项目(41601573);安徽省高校自然科学研究重点项目(KJ2019A0641);安徽省公益性技术应用研究联动计划项目(1704f0804053);安徽省科技创新战略与软科学研究专项(1706a02020048)

摘要: 为使北京某地区地下水中超标污染物F、Cr(Ⅵ)、Cr(Ⅲ)、SO24等离子得到有效处理,基于微生物固定化技术,将所合成的纳米ZrO2-聚丙烯酰胺杂化材料作为包埋剂,对硫酸盐还原菌(SRB)进行固定化处理形成纳米ZrO2-SRB颗粒,通过单因素实验优化了纳米ZrO2-SRB颗粒对污染地下水的最佳反应条件。结果表明:当SRB投加量为35%、杂化材料投加量为300 mL、温度为35 ℃时,对地下水中F、Cr(Ⅵ)、Cr(Ⅲ)、SO24的去除率分别为92.4%、99.8%、99.7%、70.4%。还原和吸附动力学拟合结果表明:SRB对Cr(Ⅵ)、SO24的还原过程符合一级还原动力学;杂化材料对F-、Cr(Ⅵ)、Cr(Ⅲ)、SO24的吸附过程符合二级吸附动力学。以上结果为处理铬和氟污染地下水提供重要的参考依据。

English Abstract

  • 冶金行业的不断发展导致冶金的生产流程越来越复杂,产生的废水所含的污染物复杂多样[1]。硫酸体系湿法冶金废水或冶炼烟气废水中常含有大量的硫酸及硫酸盐;金属中掺加铬会提高金属的机械性能,这导致冶金行业中会有大量的铬流失;铝、镁等轻金属冶炼厂用湿法洗涤烟气会产生大量的含氟废水。大量污水排放的同时,通过地表水扩散造成对土壤和地下水的污染。北京市某冶金公司每生产1 t钢锭就可产生40~80 m3的废水[2],且有监测显示,该地区的地下水受到一定程度的污染,其中浓度超标的有Cr(Ⅵ)、Cr(Ⅲ)、F以及SO24等。地下水作为很多城市的供水水源,安全性十分重要,需要引起足够的重视。

    有机-无机杂化材料是一种介于有机聚合物和无机聚合物之间的一种新型纳米复合材料[3-4],其兼具2种材料的特点且制备灵活,从而得到了广泛的应用。目前,已有研究[5-9]将其用于水处理技术中。邱迅[10]研究了一种基于二氧化硅的有机-无机杂化材料,将其用于水体中低浓度的Cu2+、Cr(Ⅵ)等重金属离子的去除,结果表明该种杂化材料对Cu2+具有一定的吸附选择性,在中性条件下吸附效果较好;可将50 mg·L−1以下的K2Cr2O7溶液中的Cr(Ⅵ)几乎完全还原并吸附。尚成江[11]合成了一种以400 nm二氧化硅微球为无机内核,通过蒸馏共沉淀聚合方法制备的核-壳有机-无机杂化材料,并探究了其对Cd2+、Cu2+、Pb2+的吸附,结果表明该杂化材料对Cd2+、Cu2+、Pb2+的最大吸附量分别为37.0、47.5、72.75 mg·g−1。硫酸盐还原菌(SRB)具有处理费用低、处理污染物种类多等优点,得到了广泛的应用。目前,国内外研究者已将其广泛应用在处理含重金属离子的工业废水、有机废水、城市生活废水、酸性地浸矿山地下水、酸性矿山废水等方面[12-14]。张佳雯[15]研究了乙醇驯化的硫酸盐还原菌处理高浓度含铬废水的实验,结果表明:在反应温度为35 ℃、pH=7.1、菌废比为1∶4时,菌株的降铬率可达到99.9%,在24 h内对Cr(Ⅵ)的还原量为147.4 mg·L−1;董慧等[16]利用硫酸盐还原菌去除矿山废水中污染物的实验结果表明:在pH=3.0、水温为26~27 ℃、进水Fe2+质量度低于450 mg·L−1m(COD)∶m(SO24)大于2.0的条件下,重金属的平均去除率在99%以上。

    针对被污染地下水成分复杂这一特点,单一的处理技术很难达到处理标准。因此,须选择固定化SRB作为污染地下水的处理核心手段。为使污染物均能得到有效去除,综合周彩华等[17]利用溶胶-凝胶工艺制备氧化锆溶胶的方法,王国祥[18]利用二氧化钛与丙烯酰胺杂化制备杂化材料的实验方法,本研究选择ZrOCl2与丙烯酰胺单体杂化聚合,得到纳米ZrO2-聚丙烯酰胺杂化材料,利用该杂化材料对SRB进行固定化处理,形成纳米ZrO2-SRB颗粒。该颗粒对水中污染物具有还原和吸附双重作用,可以使地下水中的铬和氟同时达到有效去除,克服了单一处理方法的局限性,为处理含铬和氟污染地下水提供参考。

  • 实验配置模拟地下水样成分为F、Cr(Ⅵ)、Cr(Ⅲ)、SO24,pH=4.6;实验所用的硫酸盐还原菌取自阜新市皮革园区生化池;纳米ZrO2-聚丙烯酰胺杂化材料通过实验室配置获得:将氧氯化锆溶于95%乙醇溶液中,通过水解和缩聚反应获得氧化锆溶胶溶液,在200 mL氧化锆溶胶中加入0.6 g丙烯酰胺单体、0.05 g亚硫酸氢钠和0.05 g过硫酸钾作为引发剂[19],将混合溶液充分搅拌均匀,在恒温水浴中进行聚合反应一段时间后,得到以纳米氧化锆为核、以聚丙烯酰胺为壳的有机-无机杂化材料。

  • 1) SRB固定化。称取质量比为2.5%的海藻酸钠于300 mL蒸馏水中,充分溶胀后,加入一定量无机-有机杂化材料混匀溶解,密封并于室温条件下存放8~12 h,再向混合溶液中加入质量比为2.5%的制孔剂聚乙二醇,以及一定量经驯化培养后处于对数期生长的菌液(细菌计数得到菌液对数期的菌密度为3×108个·mL−1),充分混合后,利用注射器滴入到pH=6的2% CaCl2饱和硼酸溶液中,以100 r·min−1进行搅拌交联。4 h后取出颗粒,使用0.9%的生理盐水进行冲洗,再吸干表面水分[20-25],重复3次。小球使用前,再放入富集培养基中激活12 h。

    2)单因素实验。SRB包埋处理中分别加入不同质量比的浓缩SRB菌液,保持其他物质的加入量相同,按固液比为1∶10的投加量,在35 ℃下处理模拟地下水样,每隔5 h测定各污染物浓度;以同样的方法,加入上述确定的最佳菌液量,分别加入不同体积的杂化材料,每隔5 h测定各污染物浓度;按上述确定的最佳投入量包埋细菌,控制反应在不同温度下进行,每隔5 h测定各个污染物浓度。

    3)动力学实验。配置100 mL模拟地下水样若干份,投入质量为4.15 g (300 mL)的纳米ZrO2-聚丙烯酰胺杂化材料,置于35 ℃下振荡反应,5 h后取出过滤,分别测定滤液中Cr(Ⅵ)、Cr(Ⅲ)、F以及SO24浓度。对不同时间下经纳米ZrO2-SRB颗粒处理后得到的Cr(Ⅵ)、Cr(Ⅲ)、F以及SO24浓度与单独的纳米ZrO2-聚丙烯酰胺杂化材料处理下得到的Cr(Ⅵ)、Cr(Ⅲ)、F以及SO24浓度进行对比,可计算得出各个污染物被还原以及吸附的量。

    Cr(Ⅵ)和SO24被SRB还原的过程是氧化还原反应过程,所以采用化学反应动力模型对相关数据进行拟合。本研究分别采用零级和一级反应动力学模型[26]进行拟合,拟合方程分别如式(1)和式(2)所示。

    式中:C0为初始浓度,mg·L−1Ctt时刻浓度,mg·L−1k0为零级反应速率常数,mg·(L·h)−1k1为一级反应速率常数,h−1

    用于描述固体吸附的一级吸附速率方程[27-28]如式(3)和式(4)所示。

    式中:qtt时刻的吸附量,mg·g−1qe为达到平衡时的吸附量,mg·g−1k1为一级吸附速率常数,min−1k2为二级吸附速率常数,g·(mg·min)−1

    4)水质检测。采用玻璃电极法检测pH;采用二苯碳酰二肼分光光度法测定Cr(Ⅵ);采用高锰酸钾氧化-二苯碳酰二肼分光光度法测定Cr(Ⅲ);采用铬酸钡分光光度法测定SO24;采用离子选择电极法测定F

  • 1) SRB投加量对污染地下水的去除影响。对SRB进行包埋固定化处理,分别加入体积分数为0、10%、20%、30%、35%、40%、45%的处于对数期生长的SRB菌液(细菌计数得到菌液对数期的菌密度为3×108个·mL−1),利用得到纳米ZrO2-SRB颗粒处理等量模拟地下水样,每隔5 h测定污染物浓度,结果如图1所示。由图1可知,在反应50 h内,SRB的投加量对Cr(Ⅵ)、SO24的影响较对Cr(Ⅲ)、F大;在SRB投加量为0时,纳米ZrO2-聚丙烯酰胺杂化材料对SO24、Cr(Ⅵ)、Cr(Ⅲ)、F的去除率分别为30.2%、87.7%、97.4%、92.2%。此外,杂化材料对污染物的吸附速率较快,在进行5 h时基本达到稳定。由图1(a)可知,对比不同SRB含量的颗粒,当SRB投加量为10%时,由于菌种的数量较少,过少的菌株无法适应水环境,使得溶液中SO24被还原的量也相对较少,为50.4%;当SRB投加量增加到35%时,SO24的去除率达到70.4%,继续增加SRB的投加量,SO24的去除率变化不是很大,所以选择SRB的最佳投加量为35%。由图1(b)可知:当SRB投加量为20%时,Cr(Ⅵ)的去除率为91.8%;当SRB投加量达到35%以上时,Cr(Ⅵ)的去除率可达到99.8%以上。这是因为当SRB的投加量较少时,由于Cr(Ⅵ)对细菌存在较强的毒害作用,使细菌还原Cr(Ⅵ)的能力减弱,但此时Cr(Ⅵ)的去除可以靠纳米ZrO2-聚丙烯酰胺杂化材料的吸附去除,由此看出,当SRB投加量较少时,Cr(Ⅵ)的去除率也能在90%以上。由图1(c)图1(d)可知,SRB的投加量对Cr(Ⅲ)、F的去除率影响不大,这说明Cr(Ⅲ)的去除主要是通过纳米ZrO2-聚丙烯酰胺杂化材料的吸附作用去除的,SRB的投加量不会影响到纳米ZrO2-聚丙烯酰胺杂化材料的吸附容量,所以对Cr(Ⅲ)、F的去除率没有影响。综上所述,考虑SRB对污染水处理效果的影响,最终确定较佳SRB投加量为35%。

    2)杂化材料投加量对污染地下水的去除影响。对SRB进行包埋固定化处理,每份分别加入0、100、200、300、400、500 mL纳米ZrO2-聚丙烯酰胺杂化材料,利用所得到的纳米ZrO2-SRB颗粒处理等量模拟地下水样,每隔5 h测定各污染物浓度及pH的提升效果,结果如图2所示。由图2可知,在杂化材料投加量为0时,SO24、Cr(Ⅵ)、Cr(Ⅲ)的去除率分别为55.6%、95.2%、67.4%,而对F几乎没有去除效果,且在不投加杂化材料时反应进行的速率较慢;在反应前10 h时,不同的杂化材料投加量会影响到SO24、Cr(Ⅲ)的去除效果,这是因为该阶段SRB还未能适应水环境,污染物主要是靠杂化材料的吸附作用去除。由图2(a)可知,5种细菌颗粒对SO24的最佳去除效果均可达70.4%,说明杂化材料投加量少时,SO24可以靠SRB的还原作用去除。由图2(b)可知,杂化材料的投加量不会影响Cr(Ⅵ)的最终去除率,这是因为包埋的SRB可以将Cr(Ⅵ)还原使其浓度降低,但在反应初期SRB未适应水环境之前,纳米ZrO2-聚丙烯酰胺杂化材料投加量会影响Cr(Ⅵ)的去除效果,这说明该阶段是纳米ZrO2-聚丙烯酰胺杂化材料对Cr(Ⅵ)的吸附作用。由图2(c)可知:当纳米ZrO2-聚丙烯酰胺杂化材料投加量为100 mL时,Cr(Ⅲ)的去除率为83.4%;当投加量增加到300 mL时,Cr(Ⅲ)的去除率即可增加至99.7%,之后再增加杂化材料的投加量也不会提高Cr(Ⅲ)的去除率,说明Cr(Ⅲ)的去除已达上限。由图2(d)可知:当纳米ZrO2-聚丙烯酰胺杂化材料投加量为100 mL时F的最大去除率为79.8%,在投加量为300 mL时其去除率为92.4%;当投加量大于300 mL时再继续增大投加量,F的去除率相对于投加量为300 mL的去除率仅增加1.1%左右。综合考虑经济成本问题,确定杂化材料的最佳投加量为300 mL。

    3)反应温度对污染地下水的去除影响。按上述确定的最佳包埋成分配比对SRB进行固定化后,将固定好的细菌颗粒分别按固液比为1∶10的投加量加入到模拟地下水样中,分别置于反应温度为25、30、35、40、45 ℃条件下反应,每隔5 h测定各个污染物浓度及pH的提升效果,结果如图3所示。由图3可知,温度对SO24、Cr(Ⅵ)、pH的影响较大。由图3(a)可知,5个温度条件下对应的SO24的去除率由大到小的顺序为35 ℃>40 ℃>30 ℃>45 ℃>25 ℃。由此可见,35 ℃为最佳的反应温度,对应的SO24去除率为70.4%,温度过高会影响SRB酶的活性,温度较低会使SRB的代谢速度减慢,该SRB菌属为中性菌,在温度为35 ℃时,可有利于SRB对SO24的还原。由图3(b)可知,由于Cr(Ⅵ)的去除由SRB还原作用及纳米ZrO2-聚丙烯酰胺杂化材料吸附作用,所以温度对Cr(Ⅵ)的影响没有对SO24大,在35 ℃时,Cr(Ⅵ)去除率最大为99.8%。由图3(c)可知,温度对Cr(Ⅲ)的去除率影响不大,这是因为Cr(Ⅲ)主要通过纳米ZrO2-聚丙烯酰胺杂化材料的吸附作用去除。由图3(d)可知,仅当温度上升为45 ℃时,氟离子的去除率才受到影响,这是由于纳米ZrO2-聚丙烯酰胺杂化材料中的纳米氧化锆吸附率受温度影响造成的。综上所述,综合确定最佳反应温度为35 ℃。

  • 1)微观结构及特性分析。将纳米ZrO2-聚丙烯酰胺杂化材料在60 ℃条件下烘干,分别采用SEM在放大倍数为2 000倍下观察材料的表观结构、EDS能谱、FT-IR红外光谱分析,结果如图4所示。由图4可知,纳米ZrO2-聚丙烯酰胺杂化材料表面孔隙明显,质地均匀,分散性较好,主要含O、C、H、N、Zr等元素,N—H、C—H、C=O、C—N、Zr—O—Zr特征峰,杂化材料中既有有机物的吸收峰又有无机物的吸收峰出现,纳米ZrO2与聚丙烯酰胺间是通过共价键连接的。

    1 600倍油镜下镜检SRB的革兰氏染色结果、经番红复染的芽孢染色结果和SRB的透射电镜放大30 000倍的检测结果如图5(a)~图5(c)所示。将菌株分别在好氧和厌氧2种条件下培养3 d后进行基因测序,得到2种条件下培养菌株的DNA测序结果是相同的。由此可见,实验中所用的SRB无芽孢,有鞭毛,为柠檬酸性杆菌,生化类型为兼性厌氧型。

    将SRB按最佳成分配比进行包埋后得到的细菌颗粒在60 ℃下烘干,采用SEM在放大2 000倍时观察材料的表观结构,进行EDS能谱分析以及XRD分析,结果如图6所示。由图6可知,细菌颗粒在处理污染水前,呈明显的微球状,孔道通畅,表面较为光滑;主要含C、O、N、Na、H、Zr等元素;主要含有的成分是ZrO2和CH4N2O·C2H2O4

    将纳米ZrO2-SRB处理污染地下水后得到的颗粒在60 ℃下烘干,采用SEM在2 000倍下观察材料的表观结构并进行EDS能谱分析,结果如图7(a)图7(b)所示。利用纳米ZrO2-SRB颗粒处理不含Cr(Ⅲ)的复合污染水样后得到的颗粒,经60 ℃烘干后研磨至200目粉末,进行XRD分析,结果如图7(c)所示。由图7可知,吸附处理污染水后的细菌颗粒形状变得不明显,且表面变得粗糙,出现大量的凸形褶皱,主要含有C、O、Zr、S、H、Cr、F等。由此可见,细菌颗粒在吸附污染水后出现明显S、Cr、F吸收峰;出现的新物质为ZrCr2H10、C6Cr2O12、ZrS0.67、ZrO0.67F2、Cr(OH)3。这说明SRB可将溶液中的Cr(Ⅵ)还原为Cr(Ⅲ),可将SO24还原为S2−,Cr(Ⅲ)和S2−再与颗粒中的物质进行结合,最终以ZrCr2H10、Cr(OH)3、ZrS0.67的形式存在,且最终产物中含有Cr(Ⅵ),为C6Cr2O12,这说明在有杂化材料的吸附过程中,水中F最终以ZrO0.67F2形式被去除。

    2)动力学分析。采用零级和一级反应动力学模型对Cr(Ⅵ)、SO24还原过程进行拟合,拟合结果如表1所示。由表1可知,相比于零级反应动力学(R2=0.903 2)来说,Cr(Ⅵ)的还原过程可以更好地用一级反应动力学(R2=0.994 5)进行拟合。主要原因是当SRB接触含Cr(Ⅵ)溶液时,由于Cr(Ⅵ)具有很强的毒害作用,会对细胞内的还原酶产生一定的抑制作用,且会使细菌的生长出现一定程度的延迟,而这点对零级反应动力学影响较大,所以用一级还原动力学模型可以更好地描述SRB还原Cr(Ⅵ)的过程;一级还原动力学(R2=0.994 3)比零级还原动力学(R2=0.939 7)可以更好地拟合SO24的还原过程,且通过一级还原动力学可得到速率常数为0.004 07 h−1

    Cr(Ⅵ)、Cr(Ⅲ)、FSO24的吸附动力学拟合结果如表2所示。由表2可知,Cr(Ⅵ)、Cr(Ⅲ)、FSO24的吸附过程可以更好地用二级反应动力学模型来描述。

  • 1)纳米ZrO2-SRB颗粒对复合污染地下水处理效果要优于单独的杂化材料和单独的SRB处理效果,且在SRB的体积分数为35%、杂化材料的投加量为300 mL、反应温度为35 ℃时,地下水中F、Cr(Ⅵ)、Cr(Ⅲ)、SO24的去除率分别可达到92.4%、99.8%、99.7%、70.4%。

    2)纳米ZrO2-聚丙烯酰胺杂化材料之间是通过共价键相连接的,实验所用的SRB为无芽孢,有鞭毛,为柠檬酸性杆菌,生化类型为兼性厌氧型,纳米ZrO2-SRB颗粒在处理污水后,结构发生了明显的改变,纳米ZrO2-SRB颗粒对污染地下水的去除作用包含了SRB的还原作用和ZrO2的吸附作用。

    3) Cr(Ⅵ)、SO24还原过程符合一级反应动力学;Cr(Ⅵ)、Cr(Ⅲ)、FSO24的吸附过程可以更好地用二级反应动力学模型来描述。

参考文献 (28)

返回顶部

目录

/

返回文章
返回