[1] |
陆刚. 破解工业废水排污技术发展之困[J]. 乙醛醋酸化工, 2014, 30(8): 34-38.
|
[2] |
蔡荣华, 高春娟, 张家凯, 等. 冶金废水资源及其利用[J]. 盐业与化工, 2013, 42(6): 1-3.
|
[3] |
FENG L F, QI W. Removal of heavy metal ions from wastewaters[J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011
|
[4] |
王华林. 有机聚合物/SiO2有机无机杂化材料的研究[D]. 合肥: 合肥工业大学, 2006.
|
[5] |
PRATHIK R, ARUN P P, LIANG C T, et al. Synthesis of graphene-Zn O-Au nanocomposites for efficient reduction of nitrobenzene[J]. Environmental Science & Technology, 2012, 47: 6688-6695.
|
[6] |
LIU W, NI J R, YIN X C. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes[J]. Water Research, 2013, 53: 12-25.
|
[7] |
涂玉波, 邓志成, 刘娅, 等. 无机-有机杂化絮凝剂在陶瓷废水处理中的应用[J]. 陶瓷, 2018, 36(13): 92-96.
|
[8] |
YANG G Z, WANG Q, DENG H L, et al. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange[J]. Advanced Materials Interfaces, 2014, 6: 3008-3015. doi: 10.1021/am405607h
|
[9] |
SNEH A P, ARAG D P, GIRIDHAR A M. Photocatalytic activity of combustion synthesized ZrO2 and ZrO2-TiO2 mixed oxides[J]. Industrial & Engineering Chemistry Research, 2011, 50: 12915-12924.
|
[10] |
邱迅. 基于二氧化硅的有机/无机杂化材料及其在重金属废水处理中的应用[D]. 苏州: 苏州大学, 2016.
|
[11] |
尚成江. 核-壳有机/无机杂化材料的制备及其在重金属废水处理中的应用[D]. 郑州: 郑州大学, 2015.
|
[12] |
BARRER A, DIAZ C E, LUGO-LUGO V. A review of chemical, electrochemical and biological methods for Cr(VI) reduction[J]. Journal of Hazardous Material, 2012, 119(1): 1-12.
|
[13] |
PAGNANELLI F, VIGGI C C, CIBATI A, et al. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethano[J]. Journal of Hazardous Material, 2012, 199-200: 186-192. doi: 10.1016/j.jhazmat.2011.10.082
|
[14] |
TSUKAMOTO T K, KILLION H A, MILLIER G C. Column experiments for microbiological treatment of acid mine drainage: Low-temperature, low-pH and matrix investigations[J]. Water Research, 2004, 38(6): 1405-1418. doi: 10.1016/j.watres.2003.12.012
|
[15] |
张佳雯. 乙醇驯化硫酸盐还原菌处理高浓度含铬废水研究[D]. 阜新: 辽宁工程技术大学, 2017.
|
[16] |
董慧, 张瑞雪, 吴攀, 等. 利用硫酸盐还原菌去除矿山废水中污染物试验研究[J]. 水处理技术, 2012, 38(5): 31-35. doi: 10.3969/j.issn.1000-3770.2012.05.008
|
[17] |
周彩华, 何超, 胡行方, 等. 氧氯化锆前驱体氧化锆溶胶的制备与研究[J]. 玻璃与搪瓷, 2001, 29(4): 41-44. doi: 10.3969/j.issn.1000-2871.2001.04.008
|
[18] |
王国祥. 聚丙烯酰胺/二氧化钛杂化材料的合成与表征[J]. 化学工业与工程技术, 2008, 8(10): 30-37.
|
[19] |
朱文杰. Leucobacter sp. CRB1菌还原铬(VI)的机理及其在铬渣解毒中的应用[D]. 长沙: 中南大学, 2007.
|
[20] |
MIAO Z Y, HE H, TAN T, et al. Biotreat-ment of Mn2+ and Pb2+ with sulfate-reducing bacterium desulfuromonas alkenivorans S-7[J]. Journal of Environmental Engineering, 2018, 144(3): 112-116.
|
[21] |
LEFTICARIU L, WALTERS E R, PUGH C W, et al. Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated mine drainage: Field experiments[J]. Applied Geochemistry, 2015, 63: 70-82. doi: 10.1016/j.apgeochem.2015.08.002
|
[22] |
徐卫华, 刘云国, 曾光明, 等. 硫酸盐还原菌及其还原解毒Cr(VI)的研究进展[J]. 微生物学通报, 2009, 37(7): 1040-1045.
|
[23] |
陈港, 俞铁明, 夏庆根, 等. 新型改性高岭土体系增强剂的研究[J]. 中国造纸, 2004, 26(15): 27-31.
|
[24] |
狄军贞, 王明昕, 赵微, 等. 麦饭石固定化SRB污泥颗粒处理模拟煤矿酸性废水的适应性[J]. 环境工程学报, 2017, 11(7): 3985-3990. doi: 10.12030/j.cjee.201604140
|
[25] |
安文博, 王来贵, 狄军贞. 生铁屑固定化硫酸盐还原菌颗粒特性实验分析[J]. 非金属矿, 2017, 16(4): 8-11. doi: 10.3969/j.issn.1000-8098.2017.04.003
|
[26] |
PAN X H, LIU Z J, CHEN Z, et al. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633[J]. Water Research, 2014, 55: 21-29. doi: 10.1016/j.watres.2014.01.066
|
[27] |
戴丹丹. 氯胺嘧草醚在土壤中的吸附、淋溶和降解特性研究[D]. 杭州: 浙江工业大学, 2017.
|
[28] |
殷齐贺. 膨润土负载纳米零价铁去除废水中Cd(Ⅱ)的研究[J]. 福建质量管理, 2017, 42(13): 151-152. doi: 10.3969/j.issn.1673-9604.2017.13.127
|