-
近年来,随着城市化进程的加快,工农业快速发展,氨氮废水的污染源数量和排放总量呈现日益增加趋势,由此引起的水体富营养化和水体黑臭严重威胁到水体生态平衡和人类正常的生产生活[1-4]。随着民众对水环境质量要求的提高,氨氮已成为继COD之后我国水体污染第2项约束性控制指标,水体中氨氮的去除刻不容缓[5]。研究开发经济、高效的氨氮去除技术已成为水污染控制工程研究的重点领域之一。
藻类作为水生态环境重要的初级生产者,吸收水中氮、磷及其他无机盐以维持其生长和繁殖,因而被广泛应用于氨氮废水的资源化[6-9]。在使用固定化微藻处理氨氮废水的过程中,反应器内维持较大的藻细胞密度,可增强微藻对高浓度氨氮的耐受性,从而加快了处理速度,提高了处理能力,处理工艺运行稳定可靠且易实现氨氮废水的规模化处理[10-14]。然而,以海藻酸钠为代表的传统固定化载体制备的胶球传质性能较差,限制了微生物与底物的接触[15]。生物炭具有孔隙结构发达、比表面积大和生物相容性好等特点,近年来广泛应用于微生物固定化去除污染物中,提高了固定化胶球的传质性能,有利于发挥生物炭吸附和微生物降解的协同作用,大幅度提高污染物的去除速率[16-18]。
本研究采用柚子皮制备的生物炭与海藻酸钠联合固定小球藻,并将其用于水中氨氮的去除,比较了生物炭-海藻酸钠联合固定化小球藻和游离小球藻对水中氨氮去除性能的差异,并考察了联合固定化小球藻对水中氨氮去除性能的影响因素及其重复利用性能,旨在为生物炭-海藻酸钠联合固定小球藻去除水中氨氮的应用提供参考。
生物炭-海藻酸钠联合固定化小球藻去除水中的氨氮
Removal of ammonia nitrogen by biochar-alginate-jointly immobilized Chlorella Vulgaris
-
摘要: 以海藻酸钠为包埋材料,生物炭为添加剂,固定小球藻,制得生物炭-海藻酸钠联合固定化小球藻胶球,并将其用于水中氨氮的去除。实验结果表明:生物炭-海藻酸钠联合固定化小球藻具有生物炭吸附和小球藻吸收协同作用,促进了小球藻的生长和水中氨氮的去除,且氨氮的去除率随着胶球加入量和胶球粒径的增加而提高。生物炭-海藻酸钠联合固定化小球藻胶球制备最优方案为:生物炭浓度为0.26 g·L−1、海藻酸钠质量分数为1.8%、胶球中藻细胞密度为3.0×106 个·mL−1、CaCl2质量分数为1%;胶球重复使用一次的氨氮去除率可达66.87%。生物炭促进了固定化微藻对高浓度氨氮废水的资源化利用。Abstract: Chlorella Vulgaris was immobilized in the embedding material of sodium alginate beads with additive of biochar, this biochar-alginate-jointly immobilized C. Vulgaris was used to remove ammonia nitrogen from water. The results showed that this biochar-alginate-jointly immobilized C. Vulgaris exerted the synergistic effects of biochar adsorption and C. Vulgaris uptake, and promoted C. Vulgaris growth of and ammonia nitrogen removal. The removal rate of ammonia nitrogen increased with the increase of the addition amount and diameter of biochar-alginate-jointly immobilized C. Vulgaris beads. The optimum conditions for preparation of the beads were as follows: biochar concentration of 0.26 g·L−1, sodium alginate mass fraction of 1.8%, C. Vulgaris density embedded in beads of 3.0×106 cells·mL−1 and CaCl2 mass fraction of 1%, and ammonia nitrogen removal rate of recycled beads could reach 66.87%. Biochar promoted the resource utilization of high concentration ammonia nitrogen wastewater by immobilized microalgae.
-
Key words:
- biochar /
- sodium alginate /
- immobilization /
- Chlorella Vulgaris /
- ammonia nitrogen removal rate
-
表 1 正交实验因素水平
Table 1. Level of orthogonal experimental factors
水平 因素 (A)生物炭/
(g·L−1)(B)海藻酸钠
质量分数/%(C)藻密度/
(个·mL−1)(D) CaCl2
质量分数/%1 0.26 0.9 1×106 1 2 0.52 1.8 2×106 2 3 1.04 2.7 3×106 3 表 2 正交实验结果
Table 2. Orthogonal experimental results
编号 因素水平 氨氮去除率/% 成球性 A B C D 1 0.26 0.9 1 1 73.01±0.85 + 2 0.26 1.8 2 2 71.25±0.61 ++ 3 0.26 2.7 3 3 67.38±0.58 +++ 4 0.52 0.9 3 2 67.55±0.40 + 5 0.52 1.8 1 3 59.07±0.40 ++ 6 0.52 2.7 2 1 70.62±1.21 +++ 7 1.04 0.9 2 3 54.46±2.69 + 8 1.04 1.8 3 1 73.30±0.42 +++ 9 1.04 2.7 1 2 58.67±1.26 ++ K1 70.55 65.01 63.59 72.31 K2 65.75 67.87 65.45 65.82 K3 62.15 65.56 69.41 65.31 R 8.40 2.86 5.82 8.00 注:“+”号数目表示成球性的好坏,“+”号越多,藻球表面越圆滑,成球效果越好;K1、K2、K3分别为各因素3个水平分别对氨氮的去除率影响;极差R反映了上述4种影响因素对氨氮去除率的影响程度。 -
[1] 史红星, 刘会娟, 曲久辉, 等. 无机矿质颗粒悬浮物对富营养化水体氨氮的吸附特性[J]. 环境科学, 2005, 26(5): 72-76. doi: 10.3321/j.issn:0250-3301.2005.05.014 [2] 姜瑞, 曾红云, 王强. 氨氮废水处理技术研究进展[J]. 环境科学与管理, 2013, 38(6): 131-134. doi: 10.3969/j.issn.1673-1212.2013.06.029 [3] 刘炎, 石小荣, 崔益斌, 等. 高浓度氨氮胁迫对纤细裸藻的毒性效应[J]. 环境科学, 2013, 34(11): 4386-4391. [4] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J. Enhanced removal of nitrate from water using surface modification of adsorbents: A review[J]. Journal of Environmental Management, 2013, 131: 363-374. [5] 王泽斌, 马云, 王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 36(9): 108-112. doi: 10.3969/j.issn.1673-1212.2011.09.027 [6] 陈耀璋. 固定藻去除氨氮的研究[J]. 环境科学, 1984, 5(4): 6-10. [7] ZHANG T Y, WU Y H, ZHUANG L L, et al. Screening heterotrophic microalgal strains by using the biologe method for biofuel production from organic wastewater[J]. Algal Research, 2014, 6: 175-179. doi: 10.1016/j.algal.2014.10.003 [8] XIAO L, YOUNG E B, BERGES J A, et al. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production[J]. Environmental Science & Technology, 2012, 46(20): 11459-11466. [9] FLORIAN D, LVARES P, SOPHIE F S, et al. The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm[J]. Energies, 2016, 9(3): 132-136. doi: 10.3390/en9030132 [10] MASSALHA N, BASHEER S, SABBAH I. Effect of adsorption and bead size of immobilized biomass on the rate of biodegradation of phenol at high concentration levels[J]. Industrial & Engineering Chemistry Research, 2007, 46(21): 6820-6824. [11] MALLICK N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review[J]. Biometals, 2002, 15(4): 377-390. doi: 10.1023/A:1020238520948 [12] SPINTI M, ZHANG H, TRUJILLO E M. Evaluation of immobilized biomass beads for removing heavy metals from wastewaters[J]. Water Environment Research, 1995, 67(6): 943-952. doi: 10.2175/106143095X133176 [13] MUJTABA G, LEE K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris, and suspended activated sludge[J]. Water Research, 2017, 120: 174-184. doi: 10.1016/j.watres.2017.04.078 [14] 丁一, 侯旭光, 郭战胜, 等. 固定化小球藻对海水养殖废水氮磷的处理[J]. 中国环境科学, 2019, 39(1): 338-344. [15] 曲洋, 张培, 郭沙沙, 等. 复合固定化法固定化微生物技术在污水生物处理中的研究应用[J]. 四川环境, 2009, 28(3): 78-84. doi: 10.3969/j.issn.1001-3644.2009.03.020 [16] 周珊, 胡泽友, 喻景权. 竹炭固定化假单胞菌处理含酚废水的研究[J]. 高校化学工程学报, 2008, 22(5): 889-894. doi: 10.3321/j.issn:1003-9015.2008.05.029 [17] JIN H, CAPAREDS S, CHANG Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. doi: 10.1016/j.biortech.2014.06.103 [18] LIN Q, DONG H W, JIAN L W. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 2010, 101(14): 5229-5234. doi: 10.1016/j.biortech.2010.02.059 [19] YOON J H, SIM S J, KIM M S, et al. High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen[J]. International Journal of Hydrogen Energy, 2002, 27(11/12): 1265-1270. [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [21] 李骅, 姜灿烂, 丁大虎, 等. 海藻酸钠-生物炭联合固定化菌株降解2-羟基-1,4-萘醌[J]. 南京农业大学学报, 2016, 39(5): 800-806. doi: 10.7685/jnau.201603009 [22] 赏国锋, 张涵, 沈逸菲, 等. 生物炭固定化硝化菌去除水样中氨氮的研究[J]. 上海交通大学学报(农业科学版), 2014, 32(5): 43-47.