[1] 史红星, 刘会娟, 曲久辉, 等. 无机矿质颗粒悬浮物对富营养化水体氨氮的吸附特性[J]. 环境科学, 2005, 26(5): 72-76. doi: 10.3321/j.issn:0250-3301.2005.05.014
[2] 姜瑞, 曾红云, 王强. 氨氮废水处理技术研究进展[J]. 环境科学与管理, 2013, 38(6): 131-134. doi: 10.3969/j.issn.1673-1212.2013.06.029
[3] 刘炎, 石小荣, 崔益斌, 等. 高浓度氨氮胁迫对纤细裸藻的毒性效应[J]. 环境科学, 2013, 34(11): 4386-4391.
[4] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J. Enhanced removal of nitrate from water using surface modification of adsorbents: A review[J]. Journal of Environmental Management, 2013, 131: 363-374.
[5] 王泽斌, 马云, 王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 36(9): 108-112. doi: 10.3969/j.issn.1673-1212.2011.09.027
[6] 陈耀璋. 固定藻去除氨氮的研究[J]. 环境科学, 1984, 5(4): 6-10.
[7] ZHANG T Y, WU Y H, ZHUANG L L, et al. Screening heterotrophic microalgal strains by using the biologe method for biofuel production from organic wastewater[J]. Algal Research, 2014, 6: 175-179. doi: 10.1016/j.algal.2014.10.003
[8] XIAO L, YOUNG E B, BERGES J A, et al. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production[J]. Environmental Science & Technology, 2012, 46(20): 11459-11466.
[9] FLORIAN D, LVARES P, SOPHIE F S, et al. The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm[J]. Energies, 2016, 9(3): 132-136. doi: 10.3390/en9030132
[10] MASSALHA N, BASHEER S, SABBAH I. Effect of adsorption and bead size of immobilized biomass on the rate of biodegradation of phenol at high concentration levels[J]. Industrial & Engineering Chemistry Research, 2007, 46(21): 6820-6824.
[11] MALLICK N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review[J]. Biometals, 2002, 15(4): 377-390. doi: 10.1023/A:1020238520948
[12] SPINTI M, ZHANG H, TRUJILLO E M. Evaluation of immobilized biomass beads for removing heavy metals from wastewaters[J]. Water Environment Research, 1995, 67(6): 943-952. doi: 10.2175/106143095X133176
[13] MUJTABA G, LEE K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris, and suspended activated sludge[J]. Water Research, 2017, 120: 174-184. doi: 10.1016/j.watres.2017.04.078
[14] 丁一, 侯旭光, 郭战胜, 等. 固定化小球藻对海水养殖废水氮磷的处理[J]. 中国环境科学, 2019, 39(1): 338-344.
[15] 曲洋, 张培, 郭沙沙, 等. 复合固定化法固定化微生物技术在污水生物处理中的研究应用[J]. 四川环境, 2009, 28(3): 78-84. doi: 10.3969/j.issn.1001-3644.2009.03.020
[16] 周珊, 胡泽友, 喻景权. 竹炭固定化假单胞菌处理含酚废水的研究[J]. 高校化学工程学报, 2008, 22(5): 889-894. doi: 10.3321/j.issn:1003-9015.2008.05.029
[17] JIN H, CAPAREDS S, CHANG Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. doi: 10.1016/j.biortech.2014.06.103
[18] LIN Q, DONG H W, JIAN L W. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 2010, 101(14): 5229-5234. doi: 10.1016/j.biortech.2010.02.059
[19] YOON J H, SIM S J, KIM M S, et al. High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen[J]. International Journal of Hydrogen Energy, 2002, 27(11/12): 1265-1270.
[20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[21] 李骅, 姜灿烂, 丁大虎, 等. 海藻酸钠-生物炭联合固定化菌株降解2-羟基-1,4-萘醌[J]. 南京农业大学学报, 2016, 39(5): 800-806. doi: 10.7685/jnau.201603009
[22] 赏国锋, 张涵, 沈逸菲, 等. 生物炭固定化硝化菌去除水样中氨氮的研究[J]. 上海交通大学学报(农业科学版), 2014, 32(5): 43-47.