-
随着环保形势的日益严峻,污染物排放标准愈加严格,尤其是导致水体富营养化的氮元素,如北京市最新标准《北京地方水污染排放标准》(DB 11/307-2013)规定,污水厂出水TN不得高于15 mg·L−1。污水生物处理过程中氮元素的去除是在硝化和反硝化反应共同作用下实现的,但由于我国城镇污水厂进水碳源普遍不足导致反硝化效率低下,使得碳源不足成为制约出水TN达标的重要因素[1]。为解决这一问题,在水厂运行过程中,一般通过投加甲醇等补充碳源的方式提高脱氮效率[2]。然而投加补充碳源不仅增加了运行成本,也会增加剩余污泥的产量[3]。与此同时,在生物处理过程中,微生物将有机物同化为自身细胞物质,以剩余污泥的形式被排出系统。这不仅增加后续污泥处理的成本,还造成了其所含丰富碳源的浪费[4]。在此背景下,研究者们提出多种剩余污泥破解方法并将其作为碳源回用。QIANG等[5]采用臭氧污泥破解液回流至A2/O系统,除磷效果得到明显改善。LIU等[6]研究了污泥水力破解后作为碳源对反硝化速率的影响,发现反硝化速率增加,TN去除率增加。LIU等[7]将碱解发酵污泥破解液作为A2/O系统的反硝化补充碳源,脱氮除磷率均得到明显的提高,并且与传统工艺相比有巨大的经济优势;KONDO等[8]进一步研究了剩余污泥破解回流比对强化反硝化脱氮的影响,发现当污泥破解量为总污泥量9.40%时,剩余污泥排放量减少50%,反硝化效果提高。
高铁酸盐作为一种氧化性强、绿色、多功能的新型氧化剂,在污泥处理领域已得到了广泛研究和应用,相关研究[9-11]证实了高铁酸盐具有良好的污泥溶胞性能,能有效地破坏污泥细胞,溶出胞内物质。在氧化破解污泥的过程中,Fe6+可被还原为Fe3+,Fe3+可以改善污泥的沉降性能和脱水性能[12-14]。为实现高铁酸盐的工艺利用,本研究采用复合高铁酸盐溶液(composite ferrate solution,CFS)破解污泥,将破解液回流至A/O系统强化反硝化脱氮,即高铁酸盐氧化-A/O工艺(ferrate oxidation-A/O,FO-A/O),详细考察了不同剩余污泥回流比(25%、50% 和100%)对污泥浓度、污泥活性(SOUR)、污泥沉降性能(SVI)及系统出水水质的影响,重点考察了污泥减量效果和脱氮效果,为实现污泥减量及强化脱氮提供参考。
高铁酸盐氧化-A/O工艺污泥减量及强化脱氮
Sludge reduction and enhanced nitrogen removal in ferrate oxidation-A/O process
-
摘要: 为了减少传统生物处理工艺剩余污泥排放量及强化脱氮效果,设计了高铁酸盐氧化-A/O工艺。以模拟生活污水为处理对象,研究对比了破解后不同回流比对高铁酸盐氧化-A/O工艺的污泥减量和强化脱氮效果的影响,并对出水水质和污泥性能进行了综合评价。实验结果表明:剩余污泥破解回流比r为50%时,污泥产率系数YOBS为0.05 g·g−1,剩余污泥量减少最多,为46%;高铁酸盐氧化-A/O工艺对TN和
${\rm{NH}}_4^ +$ -N去除率分别达到71.7%和88.8%,CFS污泥破解液具有较好的可生化性,可被反硝化菌有效利用,脱氮效果明显提高;该运行工况下,污泥浓度、污泥活性均有所提高,污泥沉降性得到改善。此外,污泥破解液引入系统的Fe3+可在一定程度上提高了TP的去除率。高铁酸盐氧化-A/O工艺能够提高污染物去除率,实现污泥减量同步强化脱氮的目的。-
关键词:
- 反硝化碳源 /
- 污泥减量 /
- 脱氮 /
- 高铁酸盐氧化-A/O工艺
Abstract: The A/O process coupled with composite ferrate oxidation (i.e. FO-A/O process) was designed to reduce waste activated sludge (WAS) and enhance nitrogen removal. The experiments were conducted for the simulated domestic sewage treatment. The effects of the reflux ratios of disintegrated sludge on sludge reduction and denitrification enhancement in FO-A/O process were investigated and compared. Meanwhile, a comprehensive assessment on the effluent quality and sludge properties was performed. The results showed that sludge yield coefficient (YOBS) was 0.05 g·g−1, the most reduction for WAS occurred with a value of 46% at the disintegrated sludge reflux ratio of 50%, and the removal rates of TN and${\rm{NH}}_4^ + $ -N reached 71.7% and 88.8%, respectively. The disintegrated sludge supernatant had good biodegradability, which could be effectively utilized as carbon source by denitrifying bacteria and improve the rate of nitrogen removal. Under this operation condition, the sludge concentration (MLSS and MLVSS) and sludge activity (SOUR) increased, and the sludge settleability was ameliorated as well. In addition, the iron induced by WAS disintegrated supernatant improved TP removal to some degree. In summary, the FO-A/O process could effectively improve the removal rate of pollutants and realize the purpose of simultaneous intensified denitrification and sludge reduction. -
表 1 C和N物料衡算
Table 1. Overall mass balances of C and N elements
运行工况 C的质量/g N的质量/g 进水 矿化 出水 剩余污泥 进水 矿化 出水 剩余污泥 A/O 214.39 181.73 25.96 6.70 28.84 15.98 12.39 0.47 r=25% 246.31 222.96 18.05 5.30 32.59 20.62 11.60 0.37 r=50% 275.79 253.71 18.18 3.90 35.50 25.23 10.00 0.27 r=100% 308.08 284.43 21.15 2.50 44.16 24.96 19.03 0.17 -
[1] WANG X X, WANG S Y, XUE T L, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR)systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77(15): 191-200. [2] LI Y Y, HU Y Y, WANG G H, et al. Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge[J]. Chemical Engineering Journal, 2014, 255: 365-371. doi: 10.1016/j.cej.2014.06.034 [3] SUN H H, WU Q, YU P, et al. Denitrification using excess activated sludge as carbon source: performance and the microbial community dynamics[J]. Bioresource Technology, 2017, 238: 624-632. doi: 10.1016/j.biortech.2017.04.105 [4] 徐强. 污泥处理处置技术及装置[M]. 北京: 化学工业出版社, 2003. [5] QIANG Z M, WANG L, DONG H Y, et al. Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: A pilot-scale study[J]. Chemical Engineering Journal, 2015, 268: 162-169. doi: 10.1016/j.cej.2015.01.054 [6] LIU Y, WANG H L, XU Y X, et al. Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge[J]. Separation & Purification Technology, 2016, 177: 192-199. [7] LIU H, HAN P, LIU H B, et al. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater[J]. Bioresource Technology, 2018, 260: 105-114. doi: 10.1016/j.biortech.2018.03.105 [8] KONDO T, TSUNEDA S, EBIE Y, et al. Improvement of nutrient removal and phosphorus recovery in the anaerobic/oxic/anoxic process combined with sludge ozonation and phosphorus adsorption[J]. Journal of Water & Environment Technology, 2009, 7(7): 135-142. [9] YE F X, LIU X W, YING L. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge[J]. Journal of Hazardous Materials, 2012, 199(2): 158-163. [10] AN Y, ZHOU Z, YAO J, et al. Sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with potassium ferrate disintegration[J]. Bioresource Technology, 2017, 245: 954-961. doi: 10.1016/j.biortech.2017.09.023 [11] 张彦平, 李芬, 樊伟, 等. 高铁酸盐溶液破解剩余污泥效能研究[J]. 环境科学与技术, 2016, 39(6): 65-69. [12] MING X A, FENG Y F, WU J J, et al. Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability[J]. Journal of Environmental Management, 2015, 162: 81-86. [13] ZHANG Y P, HU R Q, TIAN J Y, et al. Disintegration of waste activated sludge with composite ferrate solution: Sludge reduction and settleability[J]. Bioresource Technology, 2018, 267: 126-132. doi: 10.1016/j.biortech.2018.07.027 [14] ZHANG X H, LEI H Y, CHEN K, et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474. doi: 10.1016/j.cej.2012.09.013 [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [16] 尹军, 王雪峰, 王建辉, 等. SBR工艺活性污泥比耗氧速率与控制参数的关系[J]. 环境污染与防治, 2007, 29(7): 481-483. doi: 10.3969/j.issn.1001-3865.2007.07.001 [17] WAITE T, GILBERT M. Oxidative destruction of phenol and other organic matter by iron(VI) ferrate[J]. Water Pollution Control Federation, 1978, 50(3): 543-551. [18] 张智瑞. 小城镇自来水厂消毒技术的研究与选择[D]. 重庆: 重庆大学, 2006. [19] 于子淇. 剩余污泥二级碱解及厌氧消化的研究[D]. 广州: 华南理工大学, 2013. [20] 李慧, 刘健, 左悦. 聚合氯化铝铁对活性污泥系统的影响[J]. 中国给水排水, 2018, 34(7): 103-105. [21] HENZE M, GUJER W, MATSUO T, et al. Activated sludge model No.2D, ASM2D[J]. Water Science & Technology, 1999, 39(1): 165-182. [22] 孟顺龙, 裘丽萍, 陈家长, 等. 污水化学沉淀法除磷研究进展[J]. 中国农学通报, 2012, 28(35): 264-268. doi: 10.3969/j.issn.1000-6850.2012.35.049 [23] 胡猛, 曹军, 张艳, 等. 化学除磷辅助A2/O工艺处理城市污水脱氮除磷研究[J]. 环境工程, 2014, 32(3): 29-33. doi: 10.11835/j.issn.1000-582X.2014.03.005 [24] MAGER T R, LANDES J D, MOON D M, et al. Effect of low frequencies on the fatigue crack growth characteristics of A533 grade B class 1 plate in an environment of high-temperature primary grade nuclear reactor water. Heavy section steel technology technical report No.35[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1828-1842. doi: 10.1016/j.jece.2017.03.025 [25] ZUBROWSKA-SUDOL M, WALCZAK J. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge[J]. Water Research, 2015, 76: 10-18. doi: 10.1016/j.watres.2015.02.041