-
“十三五”规划把重金属污染防治列为环境治理工作的重心之一。然而,微/痕量重金属污染物具有污染面广、种类多、持久性及毒性大的特点,逐步引起人们的重视[1-2]。微量污染物,或称痕量污染物,包括传统型微污染物和新型微污染物,如微量重金属、类激素、多抗生素、氯联苯(PCBs)、有机氯类杀虫剂(DDT)、多环芳烃(PAHs)等[3]。由于微污染物浓度很低,只有ng·L−1~μg·L−1水平,且重金属与有机污染物不同,难以通过生物、化学降解转化途径去除。目前,重金属微/痕量污染物主要通过化学沉淀法、氧化还原法和电化学处理等方法去除,如臭氧氧化和活性炭吸附,但是臭氧氧化成本高、活性炭吸附选择性差的缺点阻碍了其工程推广应用[4-5]。
电镀行业、含镉矿山开采/冶炼以及镍镉电池生产过程中会产生一定量的含镉废水,镉污染物进入水体和土壤后容易富集且不被微生物降解,进入食物链后易对人体造成伤害,如痛痛病。目前,镉污染治理技术包括化学沉淀、氧化还原、离子交换、电化学、膜分离和吸附法等。其中常用的去除方法是化学沉淀、吸附以及膜分离法。然而,化学沉淀法存在污泥量大、难以沉降、易形成二次污染等缺点,膜分离法存在运行成本高、膜通量小、膜易污染等问题。目前,吸附剂主要为活性炭,活性炭存在pH适用范围小、分离困难等缺点。《生活饮用水卫生标准》(GB 5749-2006)对镉的限制量为0.005 mg·L−1。传统的重金属处理方法存在着难以克服的弊端,很难达到污水排放标准。同时重金属在水体中具有富集效应,ng·L−1或μg·L−1级的重金属经富集放大后,对人体的生理系统仍会造成极大伤害。
碳纳米材料具有比表面积大、机械强度高、结构可控、耐高温、表面基团丰富等特征,具有独特的物理或化学优势,是目前研究的热点和难点之一[6-9]。通过软/硬模板法、选择性蚀刻法、自组装等方法可合成独特结构的碳纳米材料[10-13],碳纳米材料表面含有丰富的羟基和羧基[14-15],可与重金属形成共价键或络合结构;独特的纳米孔道结构,甚至具有选择性吸附重金属离子的潜力[16-17],在环境领域具有潜在的应用价值[18]。
针对难以去除的微量/痕量镉重金属微污染物,强化混凝/吸附具有特有的优势。吸附法具有处理效率高、运行费用低、可操作性强、原材料来源丰富、价格便宜、易解吸等优点,是含镉废水处理工程实际应用首选方法之一。同时,高分子微球具有合成简单、价格便宜、比表面积大的特点,其表面含有大量的羟基,通过组装成空心高分子微球,可有效提高高分子微球的选择吸附性能,在微量/痕量重金属吸附领域具有自身独特的应用前景和研究价值[19-21]。本研究针对重金属微量/痕量污染物难于达标去除的难题,采用高分子微球为吸附剂,考察其对微/痕量重金属污染物的吸附性能,为微量/痕量污染物的去除提供新的技术选择和参考。
高分子空心微球的合成及其对废水镉微污染物的吸附性能
Formation of polymer with hollow microspheres and its adsorption efficiency of cadmium micropollutants
-
摘要: 为考察高分子纳米微球对微污染物镉的吸附性能,以高分子空心微球为吸附剂,以废水镉微污染物为吸附对象,探讨高分子空心微球的重金属吸附性能,重点考察水热时间和水热温度对高分子微球表面基团的影响。结果表明:水热温度升高,高分子微球出现粘连;当水热温度为180 ℃,水热时间为4 h时,镉微污染物去除率最佳。强酸性条件有利于高分子微球吸附镉微污染物,当pH<4时,镉微污染物去除率超过95%;而中碱性条件的去除率不超过70%。高分子空心微球镉离子吸附过程不属于放热过程,最大吸附量超过75 mg·g−1。经盐酸再生利用时,高分子空心微球的镉吸附率没有出现下降,超过95%以上。高分子微球对微污染物镉具有良好的吸附性能。Abstract: The adsorption efficiency of Cd2+ by polymer were investigated. Compared to traditional carbon nanospheres, polymer with hollow microspheres were used as adsorbent to adsorb cadmium micropollutants in this study, the adsorption efficiency of cadmium micropollutants by the hollow microspheres were investigated. The effect of hydrothermal temperature and holding time on surface groups of the polymer were studied. The results showed that the groups on the surface of the polymer were affected by hydrothermal temperature and holding time, the particles would be stick together with higher hydrothermal temperature. The removal rate of cadmium micropollutants was at the best at 180 ℃ for 4 h. When pH was below 4, the removal rate of cadmium micropollutants was above 95%, it showed that it benefit to adsorption cadmium micropollutants at acid condition. When pH was above 7, the removal rate was below 70%. The maximal adsorption capacity of the hollow microspheres polymer was above 75 mg·g−1, and it was not exothermic process during adsorption. The recycling efficiency of the polymer was above 95% by the recovery technique of hydrochloric acid. The Cd2+ ions can be well adsorbed by the polymer.
-
Key words:
- polymer with hollow microspheres /
- micropollutants /
- adsorption
-
-
[1] ZHOU J L, HONG H, ZHANG Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China[J]. Water Research, 2000, 34(7): 2132-2150. doi: 10.1016/S0043-1354(99)00360-7 [2] ADEWATE G, ABDALLAH D, JOANNA K. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments[J]. Journal of Hazardous Materials, 2019, 370(15): 172-195. [3] 许国栋, 张婧怡, 陈珺, 等. 城市污水处理微污染物的挑战与对策[J]. 给水排水, 2016, 52(9): 40-44. doi: 10.3969/j.issn.1002-8471.2016.09.009 [4] JONAS M, CORNELIA K, ANOŸS M, et al. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated polymer[J]. Science of the Total Environment, 2013, 461-462(1): 480-498. [5] WALASZEK M, BOIS P, LAURNT J, et al. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland[J]. Science of the Total Environment, 2018, 645(15): 854-864. [6] TANG J, YAMAUCHI Y. Polymer materials: MOF morphologies in control[J]. Nature Chemistry, 2016, 8: 638-639. doi: 10.1038/nchem.2548 [7] XU F, TANG Z W, HUANG S Q, et al. Facile synthesis of ultrahigh-surface-area hollow polymer nanospheres for enhanced adsorption and energy storage[J]. Nature Communication, 2015, 6: 7221. doi: 10.1038/ncomms8221 [8] PEI F, AN T H, ZANG J, et al. From hollow polymer spheres to N-doped hollow porous polymer bowls: Rational design of hollow polymer host for Li-S batteries[J]. Advance Energy Materials, 2016, 6(8): 1502539. doi: 10.1002/aenm.201502539 [9] ZHENG G Y, LEE S W, LIANG Z, et al. Interconnected hollow polymer nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9: 618-623. doi: 10.1038/nnano.2014.152 [10] LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous polymer spheres[J]. Nature Materials, 2015, 14: 763-774. doi: 10.1038/nmat4317 [11] ZHOU L, ZHUANG Z C, ZHAO H H, et al. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion[J]. Advance Materials, 2017, 29(20): 1602914. doi: 10.1002/adma.v29.20 [12] GRZELZAK M, VERMANT J, FURST E M, et al. Directed self-assembly of nanoparticles[J]. ACS Nanotechnology, 2010, 4(7): 3591-3605. [13] PARK H, AFZALI A, HANS J, et al. High-density integrationof carbonnanotubes via chemical self-assembly[J]. Nature Nanotechnology, 2012, 7: 787-791. doi: 10.1038/nnano.2012.189 [14] ZHANG P, QIAO Z A, DAI S. Recent advances in carbonnanospheres: Synthetic routes and applications[J]. Chemistry Communication, 2015, 51: 9246-9256. doi: 10.1039/C5CC01759A [15] SANG Y, HUANG Y, LI W, et al. Bioinspired design of Fe3+ doped mesoporous polymer nanospheres for enhanced nanozyme activity[J]. Chemistry: A European Journal, 2018, 24(28): 7259-7263. doi: 10.1002/chem.v24.28 [16] ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environment Science & Technology, 2011, 45(24): 10454-10462. [17] YU S, WANG X, TAN X, et al. Sorption of radionuclides from aqueous systems onto grapheme oxide-based materials: A review[J]. Inorganic Chemistry Frontiers, 2015, 2: 593-612. doi: 10.1039/C4QI00221K [18] SHALINI T, AHIN R, SAJITHA N, et al. Removal of U(VI) from aqueous solution by adsorption onto synthesized silica and zinc silicate nanotubes: Equilibrium and kinetic aspects with application to real samples[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 127-139. [19] ZHANG X, WU M, DONG H, et al. Simultaneous oxidation and sequestraten of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite[J]. Environmental Science & Technology, 2017, 51(11): 6326-6334. [20] QIN Q, WANG Q, FU D, et al. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ[J]. Chemical Engineering Journal, 2011, 172(1): 68-74. doi: 10.1016/j.cej.2011.05.066 [21] LIU Y, WANG L, WANG X, et al. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle[J]. Water Research, 2017, 124(1): 149-157. [22] 叶靓雯. 空心高分子微球的制备及其氧还原电催化性能研究[D]. 北京: 北京化工大学, 2018. [23] 余荣台, 刘健聪, 马湘, 等. 基于磁流体组装的空心磁性碳微球的合成及其重金属污染去除性能[J]. 陶瓷学报, 2018, 39(6): 753-757. [24] 冯珊珊. 基于磁流体组装的空心磁性碳微球及其功能性复合体[D]. 哈尔滨: 黑龙江大学, 2011. [25] AZOUAOU N, SADAOUI Z, DJAAFRI L, et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 126-134.