-
高效水处理药剂一直是水工业、水污染治理工程技术与设备创新发展的基础产业,也是水处理环保产业技术领域中重点发展的支柱产业。随着经济的高速发展,单一体系混凝剂很难满足体系复杂的废水处理要求,因此,各类新型复合混凝剂特别是无机-有机复合混凝剂的开发研制便成为研究的热点。这类新型混凝剂不仅具有无机高分子混凝剂适用性强、正电荷密度高、成本低等优势,同时也因有机高分子混凝剂带—COO—、—NH—、—OH 等亲水基团,还具有链状、环状等多种结构,有利于污染物的去除,使复合后的混凝剂具有用量少、形成絮体量大、残余污泥易处理、脱色性好等优点[1-5]。
铁盐、铝盐类无机混凝剂易水解形成羟基结构,因此,其成为复合改性混凝剂常用的原料。LIU等[6]采用铝盐改性制备的新型混凝剂提高了对富营养水体中藻类细胞中的有机物(IOM)的去除率。LIU等[7]采用阳离子接枝淀粉和聚氯化铝作为共凝剂,对低浊度、低溶解度有机物(DOM)含量的微污染地表水净化都取得了良好效果;阳离子型的PDMDAAC作为典型的有机高分子聚合物水处理剂也已成为近年来研究的热点;在协同效应作用下,两者结合可在提高复杂水质预处理效率的同时,降低处理成本。在目前的研究中[8-12],具有代表性的有PFC-PDMDAAC、PAC-PDMDAAC、PFS-PAA、PFS-CP、PFC-P(ECH-DAM)等无机-有机复合混凝剂,这些混凝剂对不同废水处理效果均高于单一使用高分子无机混凝剂或有机混凝剂,其混凝优势主要体现在提高电中和能力、增大比表面积等方面,但从微观结构等方面来看,其架桥和网补能力还有待提高。
页岩气钻井废水是在页岩气开采钻进过程中产生的废水,污染物种类和含量与使用的钻井液相关,同时受地层情况影响,其污染物主要为高浓度有机物、悬浮物颗粒、部分金属离子等,直接排放会对平台附近土壤、地表水和地下水等造成污染。如何高效绿色去除其中的大量有机物、悬浮物、色度等,是混凝预处理的关键[13]。综上所述,铝盐因其水解后形成了特殊的多羟基铝结构,因此,具有良好的吸附混凝效果,无毒的阳离子型PDMDAAC具有网状结构,能有效增强网补架桥作用。本研究以硫酸铝(AS)和二甲基二烯丙基氯化铵均聚物(PDMDAAC)为原料,制备无机-有机复合混凝剂(PAS-PDMDAAC),利用其对威远-长宁区块页岩气开采某平台钻井废水中TOC的去除率为评价指标,考察了复合混凝剂制备工艺条件,并利用响应面法中Box-Behnken实验设计对工艺条件进行了优化,得出最优制备条件,并对其进行了微观结构的表征,探讨了复合混凝制备原理及混凝反应机理,为无机-有机复合混凝剂的开发提供参考。
纳米微孔链状PAS-PDMDAAC混凝剂制备条件的优化与表征
Optimization of the preparation conditions and characterization of PAS-PDMDAAC coagulant with nano-microporous chain shape
-
摘要: 以硫酸铝(AS)和二甲基二烯丙基氯化铵聚合物(PDMDAAC)为原料制备了无机-有机复合混凝剂(PAS-PDMDAAC),并利用其对页岩气钻井废水中TOC的去除率为响应值,采用响应面法中Box-Behnken实验设计,优化了制备工艺条件。结果表明:复合混凝剂制备工艺条件对页岩气钻井废水中TOC的去除率影响显著性依次为反应温度>反应时间>Al/PDMDAAC 质量比;在响应曲面法模拟优化条件下,PAS-PDMDAAC复合混凝剂对页岩气钻井废水中TOC的去除率为74.35%;当反应温度为70 ℃,反应时间为70 min,AS/PDMDAAC质量比为6时,制备的复合混凝剂对页岩气钻井废水中TOC的去除率偏差为0.72%,符合实验精度要求。通过微观结构表征发现:PAS-PDMDAAC复合混凝剂中存在聚合羟基铝;AS水解形成羟基铝后,通过静电作用与PDMDAAC复合成规则的纳米微孔链状空间结构,并通过混凝实验溶液中Zeta电位变化,进一步验证了复合混凝剂中因静电作用使其电中和能力减弱的结论,此时复合混凝剂的最佳pH为6,弱酸性条件可避免铝盐类复合混凝剂的沉淀,以上研究结果为提高无机-有机复合混凝剂的混凝效果提供了参考。Abstract: An inorganic-organic composite coagulant PAS-PDMDAAC was prepared with aluminum sulfate (AS) and dimethyldiallylammonium chloride homopolymer (PDMDAAC), and was used to remove TOC in shale gas drilling wastewater. Then the TOC removal rate was taken as the response value, and the preparation process conditions were optimized by the Box-Behnken experimental design of the response surface method. The results showed that the significance of the effect of the preparation conditions of PAS-PDMDAAC on the TOC removal rate in shale gas drilling wastewater was following: the reaction temperature>reaction time>Al/PDMDAAC mass ratio. Under the optimum conditions through response surface method simulation, the TOC removal rate in shale gas drilling wastewater by composite coagulant PAS-PDMDAAC was 74.35%. At the reaction temperature of 70 °C, the reaction time of 70 min, and the AS/PDMDAAC mass ratio of 6, the standard deviation of TOC removal rate in gas drilling wastewater for composite coagulant was 0.72%, which met the accuracy requirements of the experiment. Through the microstructural characterization, polymerized hydroxyaluminum was found in PAS-PDMDAAC composite coagulant. AS hydrolyzed to form hydroxyaluminum and it could combine with PDMDAAC to form a regular nanoporous chain-like space structure through electrostatic interaction. The Zeta potential variation in the coagulation test solution further verify that the complex electrostatic interaction might weaken its electrical neutralization ability, and the optimum pH of PAS-PDMDAAC composite coagulant was 6. At weak acid conditions, the use of aluminum salt composite coagulant should be avoided due to its hardly precipitation. This provides the theoretical support for the improvement of the coagualation effect of the inorganic-organic composite coagulant.
-
表 1 实验因素及水平
Table 1. Experimental design of factors and levels of response surface method
因素 编码 水平 −1 0 1 反应温度/℃ X1 50 65 80 反应时间/min X2 60 90 120 Al/PDMDAAC 质量比 X3 4 6 8 表 2 实验设计与结果
Table 2. Experimental design and its corresponding results
运行编号 X1 X2 X3 TOC 去除率/% 实验值 预测值 1 −1 1 0 73.28 70.408 64 2 1 0 −1 69.78 69.618 64 3 0 −1 1 71.67 73.074 86 4 0 1 1 72.39 69.747 36 5 −1 −1 0 73.54 74.451 14 6 −1 −1 −1 73.51 73.513 66 7 0 0 0 75.51 74.817 39 8 0 0 0 75.46 74.817 39 9 1 1 0 72.95 70.693 63 10 0 1 −1 72.82 70.069 9 11 1 −1 0 71.73 73.256 14 12 −1 0 1 70.96 69.776 1 13 0 −1 −1 72.05 73.347 4 14 1 0 1 72.05 71.731 12 15 0 0 0 75.50 74.817 39 表 3 方差分析
Table 3. Analysis of variance
参数 平方和 自由度 均方 F P 结果 模型 39.04 9 4.34 210.81 <0.000 1 极显著 X1 2.86 1 2.86 138.81 <0.000 1 极显著 X2 0.75 1 0.75 36.47 0.001 8 显著 X3 0.15 1 0.15 7.22 0.043 5 显著 X1X2 0.55 1 0.55 26.61 0.003 6 显著 X1X3 5.81 1 5.81 282.29 <0.000 1 极显著 X2X3 6.25×10−4 1 6.25×10−4 0.030 0.868 5 不显著 ${{X}}_{1}^{2}$ 9.89 1 9.89 480.46 <0.000 1 极显著 ${{X}}_{2}^{2}$ 3.54 1 3.54 171.91 <0.000 1 极显著 ${{X}}_{3}^{2}$ 19.17 1 19.17 931.86 <0.000 1 极显著 残差 0.10 5 0.021 失拟性 0.10 3 0.034 48.32 0.020 3 显著 纯误差 1.4×10−3 2 7.00×10−4 总和 39.14 14 -
[1] ZHU G, ZHENG H, ZHI Z, et al. Characterization and coagulation-flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 2011, 178(1): 50-59. [2] ZHENG H, ZHU G, JIANG S, et al. Investigations of coagulation-flocculation process by performance optimization, model prediction and fractal structure of flocs[J]. Desalination, 2011, 269(1/2/3): 148-156. [3] 林霞亮, 周兴求, 伍健东, 等. 无机混凝剂与壳聚糖联合调理对污泥脱水的影响[J]. 工业水处理, 2015, 35(10): 38-41. doi: 10.11894/1005-829x.2015.35(10).038 [4] ZOUBOULIS A I, MOUSSAS P A. Polyferric silicate sulphate (PFSiS): Preparation, characterisation and coagulation behaviour[J]. Desalination, 2008, 224(1/2/3): 307-316. [5] ZHAO H Z, LUAN Z K, GAO B Y, et al. Synthesis and flocculation properties of poly(diallyldimethyl ammonium chloride-vinyl trimethoxysilane) and poly(diallyldimethyl ammonium chloride-acrylamide-vinyl trimethoxysilane)[J]. Journal of Applied Polymer Science, 2010, 84(2): 335-342. [6] LIU R P, GUO T T, MA M, et al. Preferential binding between intracellular organic matters and Al13, polymer to enhance coagulation performance[J]. Journal of Environmental Sciences, 2019, 76: 1-11. doi: 10.1016/j.jes.2018.05.011 [7] LIU Z, WEI H, LI A, et al. Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization[J]. Journal of Environmental Management, 2019, 233(1): 739-747. [8] GAO B Y, WANG Y, YUE Q Y, et al. The size and coagulation behavior of a novel composite inorganic-organic coagulant[J]. Separation & Purification Technology, 2008, 62(3): 544-550. [9] WANG Y, GAO B Y, YUE Q Y, et al. The characterization and flocculation efficiency of composite flocculant iron salts-polydimethyldiallylammonium chloride[J]. Chemical Engineering Journal, 2008, 142(2): 175-181. doi: 10.1016/j.cej.2007.11.022 [10] MOUSSAS P A, ZOUBOULIS A I. Synthesis, characterization and coagulation behavior of a composite coagulation reagent by the combination of polyferric sulfate (PFS) and cationic polyelectrolyte[J]. Separation and Purification Technology, 2012, 96: 263-273. doi: 10.1016/j.seppur.2012.06.024 [11] YANG Z, LU X, GAO B, et al. Fabrication and characterization of poly(ferric chloride)-polyamine flocculant and its application to the decolorization of reactive dyes[J]. Journal of Materials Science, 2014, 49(14): 4962-4972. doi: 10.1007/s10853-014-8197-0 [12] SHEN X, GAO B, HUANG X, et al. Effect of the dosage ratio and the viscosity of PAC/PDMDAAC on coagulation performance and membrane fouling in a hybrid coagulation-ultrafiltration process[J]. Chemosphere, 2017, 173: 288-298. doi: 10.1016/j.chemosphere.2017.01.074 [13] 朱天菊, 王兵, 谢红丽, 等. 土著水生植物对页岩气钻井废水中Cu和Pb的去除及富集特征[J]. 环境科学研究, 2017, 30(3): 478-483. [14] 张文彤. SPSS统计分析高级教程[ M]. 北京: 高等教育出版社, 2013. [15] 卢兰英. 一种 PAC-PDMDAAC 复合混凝剂的制备及应用[D]. 重庆: 重庆大学, 2012.