[1] |
ZHOU J L, HONG H, ZHANG Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China[J]. Water Research, 2000, 34(7): 2132-2150. doi: 10.1016/S0043-1354(99)00360-7
|
[2] |
ADEWATE G, ABDALLAH D, JOANNA K. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments[J]. Journal of Hazardous Materials, 2019, 370(15): 172-195.
|
[3] |
许国栋, 张婧怡, 陈珺, 等. 城市污水处理微污染物的挑战与对策[J]. 给水排水, 2016, 52(9): 40-44. doi: 10.3969/j.issn.1002-8471.2016.09.009
|
[4] |
JONAS M, CORNELIA K, ANOŸS M, et al. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated polymer[J]. Science of the Total Environment, 2013, 461-462(1): 480-498.
|
[5] |
WALASZEK M, BOIS P, LAURNT J, et al. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland[J]. Science of the Total Environment, 2018, 645(15): 854-864.
|
[6] |
TANG J, YAMAUCHI Y. Polymer materials: MOF morphologies in control[J]. Nature Chemistry, 2016, 8: 638-639. doi: 10.1038/nchem.2548
|
[7] |
XU F, TANG Z W, HUANG S Q, et al. Facile synthesis of ultrahigh-surface-area hollow polymer nanospheres for enhanced adsorption and energy storage[J]. Nature Communication, 2015, 6: 7221. doi: 10.1038/ncomms8221
|
[8] |
PEI F, AN T H, ZANG J, et al. From hollow polymer spheres to N-doped hollow porous polymer bowls: Rational design of hollow polymer host for Li-S batteries[J]. Advance Energy Materials, 2016, 6(8): 1502539. doi: 10.1002/aenm.201502539
|
[9] |
ZHENG G Y, LEE S W, LIANG Z, et al. Interconnected hollow polymer nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9: 618-623. doi: 10.1038/nnano.2014.152
|
[10] |
LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous polymer spheres[J]. Nature Materials, 2015, 14: 763-774. doi: 10.1038/nmat4317
|
[11] |
ZHOU L, ZHUANG Z C, ZHAO H H, et al. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion[J]. Advance Materials, 2017, 29(20): 1602914. doi: 10.1002/adma.v29.20
|
[12] |
GRZELZAK M, VERMANT J, FURST E M, et al. Directed self-assembly of nanoparticles[J]. ACS Nanotechnology, 2010, 4(7): 3591-3605.
|
[13] |
PARK H, AFZALI A, HANS J, et al. High-density integrationof carbonnanotubes via chemical self-assembly[J]. Nature Nanotechnology, 2012, 7: 787-791. doi: 10.1038/nnano.2012.189
|
[14] |
ZHANG P, QIAO Z A, DAI S. Recent advances in carbonnanospheres: Synthetic routes and applications[J]. Chemistry Communication, 2015, 51: 9246-9256. doi: 10.1039/C5CC01759A
|
[15] |
SANG Y, HUANG Y, LI W, et al. Bioinspired design of Fe3+ doped mesoporous polymer nanospheres for enhanced nanozyme activity[J]. Chemistry: A European Journal, 2018, 24(28): 7259-7263. doi: 10.1002/chem.v24.28
|
[16] |
ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environment Science & Technology, 2011, 45(24): 10454-10462.
|
[17] |
YU S, WANG X, TAN X, et al. Sorption of radionuclides from aqueous systems onto grapheme oxide-based materials: A review[J]. Inorganic Chemistry Frontiers, 2015, 2: 593-612. doi: 10.1039/C4QI00221K
|
[18] |
SHALINI T, AHIN R, SAJITHA N, et al. Removal of U(VI) from aqueous solution by adsorption onto synthesized silica and zinc silicate nanotubes: Equilibrium and kinetic aspects with application to real samples[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 127-139.
|
[19] |
ZHANG X, WU M, DONG H, et al. Simultaneous oxidation and sequestraten of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite[J]. Environmental Science & Technology, 2017, 51(11): 6326-6334.
|
[20] |
QIN Q, WANG Q, FU D, et al. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ[J]. Chemical Engineering Journal, 2011, 172(1): 68-74. doi: 10.1016/j.cej.2011.05.066
|
[21] |
LIU Y, WANG L, WANG X, et al. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle[J]. Water Research, 2017, 124(1): 149-157.
|
[22] |
叶靓雯. 空心高分子微球的制备及其氧还原电催化性能研究[D]. 北京: 北京化工大学, 2018.
|
[23] |
余荣台, 刘健聪, 马湘, 等. 基于磁流体组装的空心磁性碳微球的合成及其重金属污染去除性能[J]. 陶瓷学报, 2018, 39(6): 753-757.
|
[24] |
冯珊珊. 基于磁流体组装的空心磁性碳微球及其功能性复合体[D]. 哈尔滨: 黑龙江大学, 2011.
|
[25] |
AZOUAOU N, SADAOUI Z, DJAAFRI L, et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 126-134.
|