城市湿地景观水体富营养化评价、机理及治理

王文明, 宋凤鸣, 尹振文, 左锋, 郭建德, 陈银刚, 郭丹丹, 鹿文领, 曾海燕. 城市湿地景观水体富营养化评价、机理及治理[J]. 环境工程学报, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
引用本文: 王文明, 宋凤鸣, 尹振文, 左锋, 郭建德, 陈银刚, 郭丹丹, 鹿文领, 曾海燕. 城市湿地景观水体富营养化评价、机理及治理[J]. 环境工程学报, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
WANG Wenming, SONG Fengming, YIN Zhenwen, ZUO Feng, GUO Jiande, CHEN Yingang, GUO Dandan, LU Wenling, ZENG Haiyan. Evaluation, mechanism and treatment of landscape water eutrophication in city wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
Citation: WANG Wenming, SONG Fengming, YIN Zhenwen, ZUO Feng, GUO Jiande, CHEN Yingang, GUO Dandan, LU Wenling, ZENG Haiyan. Evaluation, mechanism and treatment of landscape water eutrophication in city wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023

城市湿地景观水体富营养化评价、机理及治理

    作者简介: 王文明(1982—),男,硕士,高级工程师。研究方向:水污染防治等。E-mail:w.m.wang@126.com
    通讯作者: 王文明, E-mail: w.m.wang@126.com
  • 基金项目:
    湖南省自然科学基金资助项目(2018JJ3375)
  • 中图分类号: X524

Evaluation, mechanism and treatment of landscape water eutrophication in city wetland

    Corresponding author: WANG Wenming, w.m.wang@126.com
  • 摘要: 针对再生水回用的景观水体容易发生富营养化的问题,分别以再生水和径流雨水为主要补水水源的某城市湿地不同区域景观水体为研究对象,通过水体TN、TP、COD、SS、Chla、DO等水质指标检测分析,研究了污染物的空间变化和季节变化规律,评价了湿地水体富营养化程度并探讨其机理。结果表明,以再生水为主要补水水源的湿地水体全部呈现中度富营养,而以径流雨水为主要补水水源的湿地水体则整体呈现中营养。湿地生态系统对再生水输入的高浓度氮磷污染物有一定的净化效果,但净化效率有限且受季节因素影响明显,藻类的季节性增殖引起水体中TN、TP浓度降低、SS降低、透明度下降和COD浓度升高,高浓度氮磷营养盐输入是湿地水体藻类增殖并呈现富营养化的主要原因。提出了再生水补水的水质和水量控制、景观水体健康生态系统的构建和水体长期的维护管理是综合治理水体富营养化的有效对策。
  • 自然环境中氨氮最初主要由雷电产生的硝酸盐和动植物分解产生,而磷酸盐来自雨水对矿物的溶解和动物的粪便。但随着经济社会发展,人类活动对生态环境的影响逐步加大,水环境不断恶化[1]。农业生产中使用的大量化肥、城市生活中洗涤剂、水产养殖业排放的废水中通常都含有大量氮磷[2]。过量的氮磷进入水体后,极易造成水体富营养化,藻类大量繁殖,对水体表面形成覆盖,大大降低水体含氧量和透光率,造成水质污染[3]。我国主要河流湖泊水体富营养化问题日益严峻[4-5]。水体中氮磷的去除一直是解决水体富营养化问题的关键。

    生物炭是由有机原料在一定的有限氧气热燃烧下产生的富碳材料[6]。因其具备较高的阳离子交换能力、比表面积大和结构稳定等优点,可利用吸附作用去除重金属和有机污染物,在水处理和土壤防治领域具有很好的应用前景[7]。生物炭吸附能力与本身的理化性质相关,而理化性质随制备条件的不同而不同[8]。由高温直接裂解的生物炭存在着吸附量较低的缺点,因此需要添加改性剂进行改性提高其吸附量[9]。常用的改性方法包括使用酸、碱、氧化剂和金属离子等[10-13],均可增强生物炭对各类污染物的吸附效果。

    玉米芯是一种年产量很大的农业副产物,在我国其年产量约为4 000×104 t,每年都有大量玉米芯被丢弃,或在田间被焚烧,既浪费了资源又污染了环境[14]。玉米芯具有碳含量高、天然纤维结构、产量大等特点[15],合理利用将会是良好的绿色环保资源。

    本实验对玉米芯材料进行高温煅烧处理得到生物炭,通过使用CaCl2溶液作为改性剂对玉米芯生物炭进行改性,分析其形态和结构变化,并进一步研究改性玉米芯生物炭对于模拟水体中氨氮和磷酸盐的吸附性能及其吸附机理,为生物炭处理水环境中氮磷污染物的研究提供相关实验依据。

    玉米芯(来源于天津市河北区)作为烧制生物炭的原材料。磷酸二氢钾(KH2PO4)、氯化铵(NH4Cl)均为优级纯,无水氯化钙(CaCl2)为分析纯,分别购于天津市光复精细化工研究所,天津市大茂化学试剂厂,天津市风船化学试剂科技有限公司。实验用水均为去离子水。

    1)生物炭制备。玉米芯原材料用清水洗干净,干燥后磨碎,记录热解前材料质量,随后放入坩埚中并封盖,然后置于SX-12-10箱式电阻炉(北京中山伟业仪器有限公司)内, 500 ℃条件下裂解1.5 h,裂解结束后,待温度降至室温,取出坩埚并除去表面灰分后将生物炭研磨过筛,取60~100目生物炭于密封袋内,置于干燥器中保存。

    2)生物炭清洗。未经处理的生物炭在纯水溶液中可释放少量氮磷,且在氮磷溶液中吸附效果较差,因此,对生物炭进行清洗处理。将烧制后的生物炭(BC0)放入足量去离子水中(2 g炭用250 mL水),在室温条件下用去离子水搅拌清洗多次至清洗液透明无色,使用0.45 um滤膜过滤,得到清洗后的生物炭,置于120 ℃烘箱中干燥2 h后,放置于干燥器中保存待用,清洗后生物炭记为BC。

    3)生物炭改性。采用常温处理法对热解制备的玉米芯生物炭进行改性。配制2 mg·L−1的CaCl2改性剂溶液,取0.3 g BC0放入20 mL样品瓶中后,加入3 mLCaCl2溶液,充分摇匀后放入25 ℃的恒温振荡器中,转速200 r·min−1条件下振荡24 h,然后用去离子水反复多次清洗后0.45 µm滤膜过滤分离,在120 ℃烘箱中干燥2 h后放置于干燥器中保存待用。改性生物炭用Ca-BC表示。

    对改性前后生物炭表面形态进行理化性质分析。采用扫描电子显微镜(JSM-IT300LV,日本)研究样品表面形态,X射线能谱(EDS)对生物炭进行元素分析;全自动比表面积分析仪BET(Micromeritics ASAP2460,美国)测定样品比表面积与孔隙结构;FT-IR傅里叶红外光谱仪(IS50,美国)分析生物炭吸附官能团,X射线衍射仪(XRD,Rigaku Ultima IV,日本)对生物炭进行物相分析;X射线光电子能谱仪(XPS,PHI 5000 Versaprobe Ш,日本)研究其官能团种类与含量。

    1)不同固液比实验。取不同量的生物炭放入250 mL锥形瓶中,设定固液比分别为0.1,0.5、1、2、5,分别加入50 mL质量浓度为50 mg·L−1的KH2PO4和100 mg·L−1的NH4Cl溶液,混合均匀,然后放入25 ℃恒温水浴振荡器中以180 r·min−1振荡24 h,溶液经0.45 µm滤膜过滤,测定滤出液中剩余KH2PO4和NH4Cl质量浓度,得出不同固液比下生物炭对氨氮和磷的吸附效果,确定最佳固液比。

    2)吸附动力学实验。将一定量生物炭加入到50 mL含50 mg·L−1的KH2PO4和100 mg·L−1的NH4Cl溶液中混合均匀,置于250 mL锥形瓶内,然后在25 ℃恒温水浴振荡器中以180 r·min−1分别振荡10、30、75、120、180、240、300、480、720、1 440 min后取出,经0.45 µm滤膜过滤,测定滤出液中剩余的KH2PO4和NH4Cl质量浓度,测定不同时间下生物炭对氮磷的吸附量,使用动力学模型进行拟合分析生物炭的吸附动力学特征。

    3) 等温吸附实验。设置NH4Cl质量浓度(以N计)梯度为:1、2、5、10、20、50、100 mg·L−1;设置KH2PO4质量浓度(以P计)梯度为:0.5、1、2、5、10、20、50 mg·L−1。其余操作同吸附动力学实验。

    4)NH4+-N 质量浓度的测定采用纳氏试剂分光光度法,吸收波长为420 nm;PO43--P质量浓度的测定采用钼锑抗分光光度法,吸收波长为700 nm。生物炭对氮磷的吸附效果使用Qe表示,计算公式如式(1)所示,采用准一级动力学模型(式(2))、准二级动力学模型(式(3))、Freundlich模型(式(4))、Langmuir模型(式(5))等对实验数据进行拟合。

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    式中:C0为初始氮磷的质量浓度,mg·L−1Ce为吸附平衡时氮磷的质量浓度,mg·L−1V为溶液体积,L;m为吸附剂质量,g; Qe为吸附量,mg·g−1Qt为反应t时间的吸附量,mg·g−1t为反应时间,min;K1为准一级动力学反应速率常数,min−1K2为准二级动力学模型的速率常数,g·(mg·h) -1KF为Freundlich模型的平衡常数;1n 为异质性因子;b为最大吸附量,mg·g−1KL为Langmuir模型的平衡常数。

    1) SEM电镜分析。采用场发射电镜观察BC0、BC和Ca-BC的微观形态如图1(a)~(c)所示。可以看到玉米芯生物炭具有大量蜂窝孔洞结构,比表面积大,这是有机物经高温热分解开孔作用形成,数量庞大。未经清洗的原始生物炭(BC0)孔洞结构中可见有大量碎屑杂质颗粒物,可能是经高温裂解产生的灰分,而清洗后的生物炭(BC)孔洞结构表面明显光滑,说明生物炭孔洞表面灰分经过清洗后大部分被清除,孔洞结构明显;Ca-BC更是在原有基础上出现更为细密的小型孔洞,生物炭上形成了发达的碳骨架和蜂窝结构等,使生物炭对水中氮和磷的吸附位点大大增多。

    图 1  生物炭电镜微观形态图
    Figure 1.  Electron microscopic morphology of biochar

    2) EDS分析。X射线能谱对生物炭的元素分析结果如图2(a)~(c)所示,表1为BC0、BC、Ca-BC材料元素含量分析。可以看到,C、O元素是生物炭的主要元素,同时含有微量的K元素。玉米芯生物炭在经过清洗和改性后表面元素含量百分比发生变化,清洗过程会去除材料表面部分化学物质,C占比降低,对材料元素含量产生影响, 而O、K元素含量随之相对增加;Ca-BC材料中出现Ca、Cl元素,C、K元素占比相应下降,而Ca、Cl元素含量百分比为1∶1.63,换算为摩尔比例为1∶1.84,接近1∶2,说明CaCl2改性剂材料成功附着在生物炭上。

    图 2  BC0、BC和Ca-BC的能谱分析
    Figure 2.  Energy spectra analysis of BC0, BC and Ca-BC
    表 1  BC0,BC,Ca-BC元素含量分析
    Table 1.  Element content analysis of BC0, BC and Ca-BC %
    样品 C O K Ca Cl
    BC0 90.14 8.53 1.33
    BC 89.26 9.30 1.44
    Ca-BC 87.19 9.50 0.65 1.01 1.63
      注:“—”表示含量为0。
     | Show Table
    DownLoad: CSV

    3)比表面积、孔径、孔容分析。吸附剂的孔隙结构及比表面积极大地影响着吸附剂的吸附性能。观察BC和Ca-BC的N2吸附-脱附曲线(图3)均符合Ⅳ型等温线的特征,说明这2种生物炭材料具有狭窄微孔,2种生物炭的微孔和介孔结构同时共存[16-17]。一般孔宽小于1 nm,其吸附很快达到饱和,观察2种材料吸脱附曲线符合这一情况。在低P/P0区时,BC和Ca-BC吸附量很高,表明两类生物炭充满着丰富的微孔结构;在高P/P0区时,N2吸附-脱附曲线没有重合,说明 MBC的孔内表面积远大于外表面积,除微孔外也存在着许多中孔结构。两类生物炭吸附-脱附曲线均出现了明显的回滞环,说明2种生物炭均为介孔材料[18],在P/P0>0.9时,N2吸附-脱附曲线仍在上升,说明两类生物炭中也存在着一部分大孔[19]

    图 3  生物炭N2吸脱附曲线
    Figure 3.  N2 adsorption and desorption curve of biochar

    为了进一步明确生物炭孔径大小,基于Barrett-Joyner-Halenda(BJH)法与Horvath-Kawazoe(HK)微孔分布计算法对生物炭孔径进行检测,得到BC和Ca-BC孔径分布图(图4图5),可见BC与Ca-BC孔径分布类似,主要集中整在0.8~1.5 nm,均是介孔材料,与N2吸附-脱附曲线结果一致。BC微孔孔径主要集中在1.1~1.3 nm,微孔较多,中孔较少,随着孔径增大,孔径分布量先小幅增加后逐渐减少,;Ca-BC的中孔孔径主要集中在0.8~1.2 nm,0.8 nm处出现峰值,随着孔径增大,孔径分布量在1.2 nm处再次出现峰值后逐渐减少。与BC相比,Ca-BC材料的0.8 nm孔和1.2 nm孔明显增多,累计孔隙体积成倍增长,说明BC在经过改性后出现了大量微孔结构,CaCl2对玉米芯生物炭进行改性可以促进其孔结构的形成与发展。

    图 4  微孔孔径分布图
    Figure 4.  Pore size distribution of micropores
    图 5  生物炭微孔、介孔孔径分布图
    Figure 5.  Pore size distribution of the micro- and meso-pores in biochar

    具有高比表面积和孔隙结构的生物碳材料由于具有明显的孔隙填充作用,会促进有机质的吸附[20]。Ca-BC具有发达的孔隙结构和更大的比表面积,由表2可以看到,经过改性后,生物炭比表面积(SBET)从66.37 m2·g−1增加到157.68 m2·g−1,增加了137.58%。微孔比表面积(SMicro)从53.58 m2·g−1增加到124.05 m2·g−1。生物炭孔容从(VTotal)0.040 cm3·g−1增长到0.090 cm3·g−1,而其中微孔孔容(VMicro)从0.027 cm3·g−1增长到0.065 cm3·g−1。Ca-BC的SBET,微孔结构孔容体积等相关数据均大于BC,与N2吸附-脱附曲线结果一致,说明CaCl2溶液对于生物炭的改性通过离子反应、附着等方式,显著增加了玉米芯生物炭的比表面积和微孔结构。高质量浓度氯化钙本身具有强腐蚀性,随着与生物炭接触时间的增加,孔结构也在不断丰富发展,同时也会导致孔结构坍塌,形成更多的中孔和大孔[21],从Ca-BC的结构变化可以看出,CaCl2溶液改性处理促进了玉米芯生物炭微孔和介孔结构的发育。

    表 2  生物炭结构参数
    Table 2.  Structural parameters of biochar
    生物炭 SBET/(m2·g−1) SMicro/(m2·g−1) VTotal/(cm3·g−1) VMicro/(cm3·g−1)
    BC 66.37 53.59 0.040 0.027
    Ca-BC 157.68 124.05 0.090 0.065
     | Show Table
    DownLoad: CSV

    4) FT-IR傅里叶红外谱图分析。BC0、BC、Ca-BC以及吸附24 h氮磷后的改性炭Ca-BC1的傅里叶红外光谱图如图6所示。4种生物炭在3 426 cm−1都出现了宽大明显峰值,说明生物炭表面主要以-NH4(氨基)和-OH(羟基)为主,可以观察到经过清洗后的生物炭对比原始生物炭在该区域峰强度小幅度下降,而经过改性和吸附氮磷后生物炭该峰的峰强度均明显增强,说明清洗、改性和长时间氮磷吸附均可导致生物炭表面-NH4(氨基)和-OH(羟基)含量发生变化。所有生物炭均在2 927 cm−1和2 847 cm−1处出现吸收峰,说明生物炭表面存在烷烃的-CH2键,4种生物炭该峰峰强度变化不大,说明生物炭的清洗和改性并未改变其表面的-CH2基团,氮磷吸附对于生物炭表面的烷烃基团数量有一定增强。

    图 6  生物炭傅里叶红外光谱图
    Figure 6.  FTIR spectra of biochar

    1 580 cm−1为苯(C=C)代表峰,4种生物炭在该处峰强度变化较小,Ca-BC和Ca-BC1峰强小幅度增强,说明改性和氮磷吸附会使生物炭表面苯C=C基团含量增加。1 693 cm−1处为C=O羰基代表峰区间(1 680~1 720 cm−1),羰基是典型的含氧基团代表,与BC0和BC相比,Ca-BC和Ca-BC1在此处明显出峰,说明改性和吸附使生物炭表面含氧基团含量增加。1 255 cm−1处存在的吸收峰表示生物炭可能存在醇,醚,酯类的C—O或C—O—C键伸缩振动,870 cm−1附近出现碳酸钙C—O特征吸收峰[22],说明生物炭表面存在少量碳酸钙成分,802 cm−1处为芳环上的C—H弯曲振动峰。745 cm−1附近出现氯化物特征峰区。改性生物炭此处峰强度小幅度增强,说明CaCl2改性后生物炭表面出现氯化物附着[23]。观察改性生物炭在500~1 600 cm−1范围内的谱峰可见,与未改性生物炭相比,此区间的各类基团物质峰强度均有所增加,说明CaCl2改性增加了生物炭表面多种有机物质和基团的数量。氮磷吸附后该范围内所有出现的峰峰强度都有小幅降低甚至降低回改性前,说明氮磷吸附过程可能对生物炭表面的有机物,各类基团和碳酸钙有一定消耗。

    5) XRD结果分析。图7为BC和Ca-BC的XRD谱图。可见,BC与Ca-BC均具有晶体结构,BC与Ca-BC均在2θ=28.22º出现了尖锐衍射峰,说明2种生物炭均具有炭化结晶化合物以及碳酸盐类[24],Ca-BC在该处的衍射峰强度比BC明显增加,且出现CaCl2(29.28º)衍射峰,碳酸盐聚乙烯醇聚合物(40.37º)衍射峰以及碳酸钙类盐(45º~50º)微小尖锐衍射峰出现,说明Ca-BC相较于BC,生物炭表面附着产生碳酸盐和CaCl2晶体结构,并改变了生物炭表面化合物组分,CaCl2改性后的生物炭结构表面可能会产生碳酸钙有机聚合物[25]。进一步说明CaCl2对玉米芯生物炭改性改变了其表面组分构成并产生了离子附着和化学反应。

    图 7  BC与Ca-BC的XRD谱图
    Figure 7.  XRD patterns of BC and Ca-BC

    6) XPS结果分析。图8所示为BC与Ca-BC的XPS总谱图。可以看出, 改性前的玉米芯生物炭表面主要是C1s和O1s的电子能谱峰,说明C和O是玉米芯的主要组成成分,而CaCl2改性过后的玉米芯生物炭出现新元素Ca和Cl,表面出现CaCl2附着,与EDS分析结果一致;O含量增高,说明生物炭经过改性,有利于提高含氧官能团的含量[26],与傅里叶红外谱图分析中含氧基团羰基含量增加结果相符。

    图 8  BC与Ca-BC的XPS峰谱图
    Figure 8.  XPS peak spectra of BC and Ca-BC

    在不同固液比下对Ca-BC和BC进行氨氮和磷酸盐吸附实验,吸附效果如图9(a)~(b)所示。对比改性前后生物炭对氮磷的吸附效果可见,随着固液比增大,BC和Ca-BC对氮磷的吸附效果呈现先增强后减弱趋势,且均在0.5固液比条件下达到峰值。在固液比为0.5时,BC对氨氮和磷酸盐的吸附量分别为18.47 mg·g−1和3.25 mg·g−1;而经过CaCl2改性后,Ca-BC对氨氮和磷酸盐的吸附量分别增加至28.03 mg·g−1和8.96 mg·g−1,说明CaCl2改性能有效增加玉米芯生物炭对于水中氮磷的吸附效果。

    图 9  不同固液比下Ca-BC和BC对氨氮和磷酸盐吸附效果
    Figure 9.  Adsorption effects of Ca-BC and BC toward ammonia nitrogen and phosphate at different solid-liquid ratios

    1)改性生物炭吸附氮磷动力学结果分析。分别对BC和Ca-BC 2种生物炭进行了吸附氮磷的动力学实验,并使用准一级和准二级动力学方程进行拟合,吸附动力学拟合曲线见图10(a)~(d),得到的拟合参数见表3

    图 10  Ca-BC、BC对氨氮和磷酸盐的吸附动力学特性
    Figure 10.  Adsorption kinetics of Ca-BC and BC to ammonia and phosphate
    表 3  BC和Ca-BC吸附动力学特性
    Table 3.  Adsorption kinetic characteristics of BC and Ca-BC
    生物炭类型准一级动力学方程准二级动力学方程
    Qe/(mg·g−1)K1R2Qe/ mg·g−1)K2R2
    Ca-BC-N27.490.0270.87428.4560.001 90.912
    Ca-BC-P10.030.030 40.86410.3530.005 80.904
    BC-N19.3461.6×10−40.86022.803.0×10−40.826
    BC-P5.460.012 90.7796.000.003 10.727
     | Show Table
    DownLoad: CSV

    图10可见,改性前后的生物炭对氨氮和磷酸盐的吸附量都随着吸附时间的增加而增加,生物炭对于氨氮和磷酸盐的吸附过程分为2个阶段:快速吸附阶段和慢速吸附阶段。观察图10(a)~(b),300 min前,BC对氨氮和磷酸盐的吸附处于快速吸附阶段,300~600 min内,吸附逐渐减缓,进入慢速阶段,在600 min之后趋于稳定,达到吸附平衡。图10(c)~(d)为Ca-BC对于氨氮和磷酸盐的吸附过程,可以看到180 min内,Ca-BC对于氮磷的吸附处于快速吸附阶段,在180~420 min内迅速减缓进入慢速吸附阶段,并在420 min后逐渐趋于稳定达到吸附平衡。结合SEM和孔径孔容分析,改性后的生物炭比表面积增大,蜂窝表面吸附位点增多,Ca-BC对氮磷的吸附能够更快达到吸附稳定,快速吸附阶段耗时更短,平衡吸附量更大。

    观察动力学拟合方程计算出的平衡吸附量Qe可以看出,生物炭在经过改性后对氮磷污染物的吸附量明显增加,其中氨氮平衡吸附量由改性前的19.36 mg·g−1增加到28.39 mg·g−1,磷酸盐平衡吸附量由5.46 mg·g−1增加到9.74 mg·g−1,分别增加了46.6%和78.4%,说明生物炭经改性处理后对氮磷污染物的吸附增强效果明显,且吸附过程更加复杂。对Ca-BC和BC的吸附数据进行动力学拟合可以看出,BC对氨氮(图10(a))和磷酸盐(图10(b))的吸附能用准一级动力学模型更好的表达,相关系数分别达到了0.860和0.779,高于准二级动力学模型的拟合相关系数,说明BC对氨氮和磷酸盐的吸附过程以物理扩散为主,生物炭表面的范德华力对吸附起关键作用,吸附行为受离子浓度差影响[27]。Ca-BC对氨氮(图10(c))和磷酸盐(图10(d))的吸附与准一级动力学和准二级动力学均能较好的拟合,但准二级动力学拟合相关度更好,相关系数R2分别达到了0.912和0.904。准二级动力学可以描述孔填充,共价键形成和离子交换等作用,表明吸附与物理吸附和化学吸附密切相关[28],说明BC经CaCl2改性后,与未改性前的生物炭对氮磷污染物的吸附机制不同,Ca-BC与水中氮磷之间的交换或共享电子可能会产生共价键或新化合物[29]。金属离子和 NH4+在含氧官能团上的离子交换是金属改性生物炭去除水中NH4+-N 的主要机制之一[30], Ca-BC的FT-IR、XPS和XRD谱图均检测到含氧官能团的增加以及Ca2+的大量存在,说明Ca-BC对氨氮的化学吸附主要表现为离子交换作用;LIU等[31]研究发现水溶液中的Ca2+能与OH和磷酸盐结合形成羟基磷灰石 (HAP) 沉淀去除磷酸盐,说明Ca-BC去除磷酸盐的化学过程主要为化学沉淀作用。

    2)改性生物炭吸附氮磷等温吸附模型拟合分析。根据等温吸附实验结果,分别使用Freundlich和Langmuir等温吸附方程进行拟合,等温吸附拟合曲线见图11(a)~(b),拟合参数见表4。如图11(a)~(b)所示,氮磷溶液初始质量浓度是生物炭吸附氮磷的重要影响因素,氮磷溶液初始质量浓度越高,Ca-BC对于氮磷的吸附效果越好。Ca-BC对氮磷的等温吸附拟合结果可见Freundlich方程和Langmuir方程都有很好的拟合效果,相关系数R2都达到了0.9以上,相比之下,Langmuir等温吸附模型拟合效果更佳,对氨氮和磷酸盐的等温吸附拟合相关系数R2分别达到了0.999和0.971,说明Ca-BC对于水中氨氮和磷酸盐的吸附主要为单分子层吸附,材料为均质表面,表面点位均匀分布[32],吸附过程以物理吸附为主。根据Langmuir等温吸附模型可得到Ca-BC对水中氨氮和磷酸盐的最大吸附量分别为107.68 mg·g−1和11.28 mg·g−1

    图 11  Ca-BC对氨氮和磷酸盐等温吸附特性
    Figure 11.  Isothermal adsorption characteristics of Ca-BC to ammonia nitrogen and phosphate
    表 4  Ca-BC对氮磷等温吸附特性
    Table 4.  Isothermal adsorption characteristics of Ca-BC to nitrogen and phosphorus
    生物炭类型Freundlich方程Langmuir方程
    KF1/nR2b/( mg·g−1)KLR2
    Ca-BC-N0.559 80.8250.991107.680.0030.999
    Ca-BC-P1.745 80.470.90611.280.1260.971
     | Show Table
    DownLoad: CSV

    生物炭原材料不同以及改性剂和改性方法的不同,对氮磷的吸附能力也会有所不同,通常可以用最大吸附量来大致评判不同生物炭的吸附性能。如表5所示,同种原材料生物炭,采用不同的改性剂和改性方法进行改性后,对氮磷的吸附性能相差较大。以芦苇为原材料,同样以MgCl2作为改性剂,共热解改性后对磷酸盐的最大吸附量为109.57 mg·g−1[33],而经浸渍+共热解改性后,对磷酸盐的最大吸附量可达到317.09 mg·g−1 [34]。使用不同的改性剂对玉米芯进行浸渍改性后,对氨氮的吸附量有所不同,本研究和李廷梅等[35]采用不同改性方法均对玉米芯进行了改性研究,结果表明,CaCl2和H3PO4改性玉米芯对氨氮的吸附量分别107.68 mg·g−1和3.97 mg·g−1,CaCl2改性更能促进玉米芯对氨氮的吸附。同一种改性剂对不同材料生物炭进行改性后,对氮磷的吸附性能也均有不同,如MgCl2改性芦苇[33]、香蕉秸秆[36]、玉米芯[37]对氨氮和磷酸盐的吸附量各有差异。除去改性方法,改性剂、原材料、改性剂质量浓度、共热解改性温度等也均会对生物炭的吸附性能产生影响,所以实际不同改性生物炭的吸附性能差异均不能绝对而言。

    表 5  与其他改性生物炭对比
    Table 5.  Comparison with other modified biochar
    污染物 生物炭材料 改性剂 改性方法 Qe/( mg·g−1) 参考文献
    氨氮 芦苇 MgCl2 共热解 32.01 [33]
    玉米芯 H3PO4 浸渍 3.97 [35]
    香蕉秸秆 MgCl2 浸渍+共热解 31.15 [36]
    芦苇 H2SO4 浸渍 5.19 [38]
    玉米芯 CaCl2 浸渍 107.68 本研究
    磷酸盐 芦苇 MgCl2 共热解 109.57 [33]
    芦苇 MgCl2 浸渍+共热解 317.09 [34]
    玉米芯 MgCl2 浸渍+共热解 56.54 [37]
    玉米秸秆 CaCl2 浸渍+共热解 33.94 [39]
    玉米芯 CaCl2 浸渍 12.18 本研究
     | Show Table
    DownLoad: CSV

    本研究采用的CaCl2浸渍法改性玉米芯,相较共热解法操作简单,且处理后的生物炭比其他浸渍生物炭甚至是其他改性方法的生物炭,对氨氮的吸附效果更好,Qe达到了107.68 mg·g−1,但对于磷酸盐的吸很低,仍待优化,说明使用CaCl2改性玉米芯对氨氮的吸附优化更为突出。Ca2+离子为生物所需微量元素,少量浸出甚至能提高植物的生长,如增加茎和根的长度,促进新陈代谢[40],Cl为环境水体中常见元素,不会造成污染,环境风险很小。

    对于实际水体,多种离子之间的竞争吸附也会影响吸附效果。周成赟等[41]研究了实际水体中共存阴离子对Ce-BDC-400(A)吸附氟过程的影响,发现CO32−会对生物炭吸附有一定的抑制作用,Ca-BC在实际水体中的应用有待进一步深入研究。

    1) CaCl2改性可以改善玉米芯生物炭孔隙结构并产生有效离子附着,CaCl2在生物炭表面产生附着且发生化学变化,可以检测到CaCO3类物质。清洗、改性和吸附并没有在材料表面产生新的官能团,只是导致材料表面原有官能团的含量发生变化。

    2)随着吸附时间和氮磷溶液质量浓度的增加,生物炭对氮磷的吸附效果明显增强;在固液比为0.5时BC对氮磷的吸附效果最好,经过改性后,生物炭对于氮磷的吸附效果明显增强,氨氮平衡吸附量由改性前的19.36 mg·g−1增加到28.39 mg·g−1,磷酸盐平衡吸附量由5.46 mg·g−1增加到9.74 mg·g−1,分别增加了46.6%和78.4%。

    3) BC对水中氮磷吸附特征更符合准一级动力学,吸附过程主要为范德华力主导的物理吸附;Ca-BC吸附特征更符合准二级动力学,使生物炭对氮磷的吸附过程变得更为复杂,同时存在物理吸附和化学吸附,除物理吸附外,离子交换是去除水中NH4+-N 的主要化学吸附机制之一,而离子交换游离出来的Ca2+能够与磷酸盐结合产生化学沉淀去除磷酸盐。Ca-BC对氨氮和磷酸盐的等温吸附平衡规律更符合Langmuir等温吸附模型,吸附过程更接近单分子层吸附,说明Ca-BC对氮磷的吸附以物理吸附为主,化学吸附为辅。

  • 图 1  实验水体采样点分布图

    Figure 1.  Location map of sampling points inexperimental water body

    图 2  不同采样点TN、TP年平均浓度的变化

    Figure 2.  Variation of annual mean concentration of TN and TP at different sampling points

    图 3  不同采样点COD、SS年平均浓度的变化

    Figure 3.  Variation of annual mean concentration of COD and SS at different sampling points

    图 4  不同采样点Chla、DO年平均浓度的变化

    Figure 4.  Variation of annual mean concentration of Chla and DO at different sampling points

    图 5  不同采样点TN、TP、Chla和COD季度平均浓度的变化

    Figure 5.  Variation of quarterly mean concentration of TN, TP, Chla and COD at different sampling points

    表 1  湿地水体富营养化程度评价

    Table 1.  Eutrophication status evaluation ofwetland waterbody

    采样点FTLI(∑)营养状态分级
    167.45中度富营养
    267.22中度富营养
    368.44中度富营养
    468.43中度富营养
    567.29中度富营养
    661.81中度富营养
    742.58中营养
    838.94中营养
    951.17轻度富营养
    采样点FTLI(∑)营养状态分级
    167.45中度富营养
    267.22中度富营养
    368.44中度富营养
    468.43中度富营养
    567.29中度富营养
    661.81中度富营养
    742.58中营养
    838.94中营养
    951.17轻度富营养
    下载: 导出CSV

    表 2  湿地水体主要水质指标的相关性分析

    Table 2.  Correlation analysis of main water quality indicators of wetland water body

    项目ChlaTPTNSSCODDO
    Chla1.000−0.993**−0.973**−0.761*0.944**0.918**
    TP−0.993**1.0000.990**0.775*−0.903*−0.891*
    TN−0.973**0.990**1.0000.769*−0.859*−0.861*
    SS−0.7610.775*0.769*1.000−0.570−0.445
    COD0.944**−0.903*−0.859*−0.5701.0000.973**
    DO0.918**−0.891*−0.861*−0.4450.973**1.000
      注:*表示在0.05水平(双侧)上显著相关,**表示在0.01水平(双侧)上显著相关。
    项目ChlaTPTNSSCODDO
    Chla1.000−0.993**−0.973**−0.761*0.944**0.918**
    TP−0.993**1.0000.990**0.775*−0.903*−0.891*
    TN−0.973**0.990**1.0000.769*−0.859*−0.861*
    SS−0.7610.775*0.769*1.000−0.570−0.445
    COD0.944**−0.903*−0.859*−0.5701.0000.973**
    DO0.918**−0.891*−0.861*−0.4450.973**1.000
      注:*表示在0.05水平(双侧)上显著相关,**表示在0.01水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] 王骁, 许素, 陶文绮, 等. 再生水补水河道水质的生态修复示范工程及效能分析[J]. 环境工程学报, 2018, 12(7): 2132-2140. doi: 10.12030/j.cjee.201803065
    [2] 范育鹏, 陈卫平. 北京市再生水利用生态环境效益评估[J]. 环境科学, 2014, 35(10): 4003-4008.
    [3] 李健. 海河流域再生水利用现状及效益分析[J]. 水科学与工程技术, 2012, 36(2): 53-55. doi: 10.3969/j.issn.1672-9900.2012.02.023
    [4] 李燕群, 何通国, 刘刚, 等. 城市再生水回用现状及利用前景[J]. 资源开发与市场, 2011, 27(12): 1096-1100. doi: 10.3969/j.issn.1005-8141.2011.12.013
    [5] 管策, 郁达伟, 郑祥, 等. 我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J]. 农村环境科学学报, 2012, 31(12): 2309-2320.
    [6] 王鹤立, 陈雷, 程丽, 等. 再生水回用于景观水体的水质标准探讨[J]. 中国给水排水, 2001, 17(12): 31-35. doi: 10.3321/j.issn:1000-4602.2001.12.009
    [7] 周律, 邢丽贞, 段艳萍, 等. 再生水回用于景观水体的水质要求探讨[J]. 给水排水, 2007, 33(4): 38-42. doi: 10.3969/j.issn.1002-8471.2007.04.009
    [8] 中华人民共和国环境保护部. 地表水和污水监测技术规范: HJ/T 91-2002[S]. 北京: 中国环境科学出版社, 2002.
    [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [10] 中华人民共和国环境保护部. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法: HJ 636-2012[S]. 北京: 中国环境科学出版社, 2012.
    [11] 中华人民共和国环境保护部. 水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法: HJ 670-2013[S]. 北京: 中国环境科学出版社, 2013.
    [12] 中华人民共和国环境保护部. 水质 化学需氧量(COD)的测定 重铬酸钾法: GB 11914-1989[S]. 北京: 中国环境科学出版社, 1989.
    [13] 中华人民共和国环境保护部. 水质 悬浮物的测定 重量法: GB 11901-1989[S]. 北京: 中国环境科学出版社, 1989.
    [14] 中华人民共和国环境保护部. 水质 叶绿素的测定 分光光度法: SL 88-2012[S]. 北京: 中国环境科学出版社, 2012.
    [15] 金相灿. 中国湖泊富营养化[M]. 北京: 中国环境科学出版社, 1990.
    [16] 李祚泳, 张辉军. 我国若干湖泊水库的营养状态指数TSIc及其与各参数的关系[J]. 环境科学学报, 1993, 13(4): 391-397.
    [17] 祝声金, 邓君. 桂平市乡镇水库型集中式饮用水源营养化评价[J]. 建筑工程技术与设计, 2015(21): 1150.
    [18] 杨显祥, 魏文志. 旅游季节瘦西湖营养化程度评价与防治对策[J]. 环境科学与管理, 2011, 36(6): 164-167. doi: 10.3969/j.issn.1673-1212.2011.06.043
    [19] 于凤存, 方国华, 徐佳, 等. 中小型湖库型饮用水水源地污染负荷总量控制探讨[J]. 水文, 2015(4): 42-46. doi: 10.3969/j.issn.1006-009X.2015.04.010
    [20] 李萍, 钟敏, 吴鹏举, 等. 东莞燕岭湿地景观水体富营养化的现状及机理分析[J]. 中国给水排水, 2018, 34(5): 47-51.
    [21] 李锋民, 胡洪营. 植物化感作用控制天然水体中有害藻类的机理与应用[J]. 给水排水, 2004, 30(2): 1-4. doi: 10.3321/j.issn:1000-4602.2004.02.001
    [22] 崔丹红, 周明璟, 秦振平, 等. 膜法用于再生水景观补给水深度脱氮除磷的研究[C]//杭州水处理技术研究开发中心, 浙江大学膜与水处理技术教育部工程研究中心. 第七届全国膜与膜过程学术报告会论文集. 杭州, 2011: 375-375.
    [23] 钟丽燕, 郝瑞霞, 万京京, 等. 新型缓释碳源耦合海绵铁同步脱氮除磷的研究[J]. 中国给水排水, 2017, 33(9): 69-72.
    [24] 荆王松, 王晓敏, 张敏东, 等. 高效沉淀/反硝化滤池处理城镇污水厂尾水的深度提标工艺研究[J]. 环境与可持续发展, 2017, 42(6): 167-169. doi: 10.3969/j.issn.1673-288X.2017.06.045
    [25] 王建超. 新型复合三维电极生物膜工艺强化脱氮除磷研究[D]. 北京: 北京工业大学, 2015.
    [26] 王文明, 危建新, 刘耘东, 等. 日本污水脱氮除磷深度处理工艺分析[J]. 环境工程学报, 2015, 9(3): 1194-1200. doi: 10.12030/j.cjee.20150334
    [27] 常会庆. 水生植物和微生物联合修复富营养化水体试验效果及机理研究[D]. 杭州: 浙江大学, 2006.
    [28] 韩华杨. 伊乐藻-固定化脱氮微生物联用技术对河道沉积物脱氮效果及机理研究[D]. 南京: 南京大学, 2016.
    [29] 章文贤, 韩永和, 卢文显, 等. 植物生态浮床的制备及其对富营养化水体的净化效果[J]. 环境工程学报, 2014, 8(8): 3253-3258.
    [30] 胡绵好, 袁菊红, 常会庆, 等. 凤眼莲-固定化氮循环细菌联合作用对富营养化水体原位修复的研究[J]. 环境工程学报, 2009, 3(12): 2163-2169.
    [31] 贾锐珂, 王晓昌, 宋佳. 多元组合系统净化富营养化水体的示范工程[J]. 环境工程学报, 2018, 12(3): 975-983. doi: 10.12030/j.cjee.201709122
  • 期刊类型引用(5)

    1. 回东冰,吴明松. 二氧化氯与PAC混凝剂同时投加对含藻水的处理效果. 城镇供水. 2022(05): 30-34 . 百度学术
    2. 陈黎明,陈炼钢,李褆来,陆昊. 城市湿地公园生态补水调度方案对比分析. 水资源保护. 2022(06): 162-167+174 . 百度学术
    3. 李屹昆,潘红忠,吴佐京通,习文祥,王家明. 原位生态修复技术在景观水体水质维护中的应用. 环境保护与循环经济. 2022(10): 18-23 . 百度学术
    4. 张华,贾恩睿,陈松,方奕袭,董凯,贾伟. 海口市湿地保护修复经验. 环境与可持续发展. 2021(02): 144-150 . 百度学术
    5. 李巧云,廖菊阳,胥雯,刘艳,廖鹏,吴林世,宋胤,王玲,张娟,黄雅奇,谭知虎. 松雅湖湿地公园水环境特征及富营养化评价. 中国农学通报. 2021(25): 85-91 . 百度学术

    其他类型引用(6)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.1 %DOWNLOAD: 4.1 %HTML全文: 90.7 %HTML全文: 90.7 %摘要: 5.3 %摘要: 5.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 87.0 %其他: 87.0 %Ashburn: 0.3 %Ashburn: 0.3 %Baojishi: 0.1 %Baojishi: 0.1 %Beijing: 3.4 %Beijing: 3.4 %Boulder: 0.0 %Boulder: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 1.1 %Changsha: 1.1 %Changsha Shi: 0.1 %Changsha Shi: 0.1 %Chengdu: 0.5 %Chengdu: 0.5 %Chongqing: 0.1 %Chongqing: 0.1 %Gaocheng: 0.0 %Gaocheng: 0.0 %Guangzhou: 0.1 %Guangzhou: 0.1 %Hangzhou: 0.9 %Hangzhou: 0.9 %Hefei: 0.0 %Hefei: 0.0 %Hyderabad: 0.0 %Hyderabad: 0.0 %Jinan: 0.1 %Jinan: 0.1 %Jinba: 0.0 %Jinba: 0.0 %Jinrongjie: 0.1 %Jinrongjie: 0.1 %Kunming: 0.1 %Kunming: 0.1 %Langfang: 0.0 %Langfang: 0.0 %Lanzhou: 0.1 %Lanzhou: 0.1 %Leeds: 0.0 %Leeds: 0.0 %Mountain View: 0.0 %Mountain View: 0.0 %Nanjing: 0.0 %Nanjing: 0.0 %Newark: 0.0 %Newark: 0.0 %Ningbo: 0.1 %Ningbo: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Shanghai: 0.1 %Shanghai: 0.1 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Suzhou: 0.1 %Suzhou: 0.1 %Taiyuan: 0.1 %Taiyuan: 0.1 %Tianjin: 0.4 %Tianjin: 0.4 %Wuhan: 0.4 %Wuhan: 0.4 %Xi'an: 0.0 %Xi'an: 0.0 %Xingfeng: 0.1 %Xingfeng: 0.1 %Xuzhou: 0.0 %Xuzhou: 0.0 %XX: 2.0 %XX: 2.0 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %Zhongshan: 0.0 %Zhongshan: 0.0 %北京: 0.4 %北京: 0.4 %张家口: 0.0 %张家口: 0.0 %泰安: 0.0 %泰安: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.2 %深圳: 0.2 %石家庄: 0.0 %石家庄: 0.0 %贵阳: 0.0 %贵阳: 0.0 %郑州: 0.3 %郑州: 0.3 %银川: 0.0 %银川: 0.0 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.0 %阳泉: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他AshburnBaojishiBeijingBoulderChang'anChangshaChangsha ShiChengduChongqingGaochengGuangzhouHangzhouHefeiHyderabadJinanJinbaJinrongjieKunmingLangfangLanzhouLeedsMountain ViewNanjingNewarkNingboQingdaoShanghaiShenyangShenzhenShijiazhuangSuzhouTaiyuanTianjinWuhanXi'anXingfengXuzhouXXYunchengZhengzhouZhongshan北京张家口泰安济南深圳石家庄贵阳郑州银川长沙阳泉齐齐哈尔Highcharts.com
图( 5) 表( 2)
计量
  • 文章访问数:  7034
  • HTML全文浏览数:  7034
  • PDF下载数:  106
  • 施引文献:  11
出版历程
  • 收稿日期:  2019-01-04
  • 录用日期:  2019-05-24
  • 刊出日期:  2019-12-01
王文明, 宋凤鸣, 尹振文, 左锋, 郭建德, 陈银刚, 郭丹丹, 鹿文领, 曾海燕. 城市湿地景观水体富营养化评价、机理及治理[J]. 环境工程学报, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
引用本文: 王文明, 宋凤鸣, 尹振文, 左锋, 郭建德, 陈银刚, 郭丹丹, 鹿文领, 曾海燕. 城市湿地景观水体富营养化评价、机理及治理[J]. 环境工程学报, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
WANG Wenming, SONG Fengming, YIN Zhenwen, ZUO Feng, GUO Jiande, CHEN Yingang, GUO Dandan, LU Wenling, ZENG Haiyan. Evaluation, mechanism and treatment of landscape water eutrophication in city wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023
Citation: WANG Wenming, SONG Fengming, YIN Zhenwen, ZUO Feng, GUO Jiande, CHEN Yingang, GUO Dandan, LU Wenling, ZENG Haiyan. Evaluation, mechanism and treatment of landscape water eutrophication in city wetland[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2898-2906. doi: 10.12030/j.cjee.201901023

城市湿地景观水体富营养化评价、机理及治理

    通讯作者: 王文明, E-mail: w.m.wang@126.com
    作者简介: 王文明(1982—),男,硕士,高级工程师。研究方向:水污染防治等。E-mail:w.m.wang@126.com
  • 湖南先导洋湖再生水有限公司,长沙 410208
基金项目:
湖南省自然科学基金资助项目(2018JJ3375)

摘要: 针对再生水回用的景观水体容易发生富营养化的问题,分别以再生水和径流雨水为主要补水水源的某城市湿地不同区域景观水体为研究对象,通过水体TN、TP、COD、SS、Chla、DO等水质指标检测分析,研究了污染物的空间变化和季节变化规律,评价了湿地水体富营养化程度并探讨其机理。结果表明,以再生水为主要补水水源的湿地水体全部呈现中度富营养,而以径流雨水为主要补水水源的湿地水体则整体呈现中营养。湿地生态系统对再生水输入的高浓度氮磷污染物有一定的净化效果,但净化效率有限且受季节因素影响明显,藻类的季节性增殖引起水体中TN、TP浓度降低、SS降低、透明度下降和COD浓度升高,高浓度氮磷营养盐输入是湿地水体藻类增殖并呈现富营养化的主要原因。提出了再生水补水的水质和水量控制、景观水体健康生态系统的构建和水体长期的维护管理是综合治理水体富营养化的有效对策。

English Abstract

  • 我国水资源短缺的形势十分严峻,400多个城市常年供水不足,114个城市水资源严重匮乏,水资源短缺已经严重阻碍社会经济的发展。鉴于我国水资源匮乏的现实,《水污染防治行动计划》等明确要求,2020年严重缺水城市再生水利用率应达到20%以上,京津冀区域达到30%以上。城市污水再生利用成为缓解城市水资源供需矛盾和实现水资源可持续利用的重要途径。

    近年来,越来越多的城市将达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准和《城市污水再生利用 景观环境用水水质》(GB/T 18921-2002)的污水处理厂尾水作为再生水给湖泊或湿地等地表水体补水[1-4]。一级A标准尾水氮、磷污染物含量(TN 15 mg·L−1、TP 0.5 mg·L−1)较高,没有达到《地表水环境质量标准》(GB 3838-2002)V类水质(TN 2 mg·L−1、TP 0.4 mg·L−1),更没有达到国际公认的水体发生富营养化的临界值(TN 0.2 mg·L−1、TP 0.2 mg·L−1)[5]。因此,地表景观水体富营养化控制是再生水回用必须考虑的重要技术问题[6-7]

    本研究以径流雨水和再生水作为主要补水水源的某城市湿地不同区域景观水体为研究对象,有针对性地分析水体TN、TP等6项水质指标3年来的时间、空间变化规律及各项水质指标的相关性,进而全面评价水体富营养化程度,剖析富营养化机理,并探讨富营养化治理对策,以期为我国再生水回用的相关规划设计提供技术参考。

  • 某城市湿地景观水体包括I、Ⅱ 2个水系分区(见图1),总面积约为9.65×105 m2,水深为0.8~3 m,平均水深约为1.4 m,总容积约为2.09×106 m3。水系Ⅰ区较Ⅱ区地势低,水流通常由水系Ⅱ区流向Ⅰ区,当Ⅱ区水位下降明显时,开启水泵,从Ⅰ区抽水给Ⅱ区补水。

    水系Ⅰ区补水水源主要为再生水厂尾水和径流雨水,再生水厂尾水水质达到一级A标准,平均尾水量约4×104 t·d−1,尾水量约占总补水量的80%。径流雨水来自水系周边11个雨水排口,雨水汇水面积约2.78×106 m2,其中汇水面积2.34×106 m2的7个雨水排口建有雨水收集池(面积约1.71×104 m2、容积约2.55×104 m3),径流雨水经收集池净化处理后汇入水系Ⅰ区。

    水系Ⅱ区补水水源主要为径流雨水,径流雨水来自水系周边12个雨水排口,雨水汇水面积约1.46×106 m2,其中汇水面积1.93×105 m2的3个雨水排口建有雨水收集池(面积约9.5×103 m2、容积约1.4×104 m3)和汇水面积1.9×105 m2的1个雨水排口建有人工快渗处理系统(constructed rapid infiltration, CRI),径流雨水经收集池和CRI净化处理后汇入水系Ⅱ区。

  • 根据《地表水和污水监测技术规范》(HJ/T 91-2002)[8]进行实验水体水样布点和采集,结合水系功能区划和水流走向,水样点布设见图1。水系Ⅰ区设采样点6个,沿水流走向分别为1号~6号采样点,1号采样点是再生水厂尾水汇入点,6号采样点是水体排放泵站附近水样点。水系Ⅱ区设采样点3个,沿水流走向分别为7号~9号采样点。2015—2017年,每月在各采样点取水样4次,计算水质指标年均浓度作为水体富营养化分析评价的依据。

    水样的采集和保存参照文献中的方法[9]。水样水质监测项目包括总氮(TN)、总磷(TP)、化学需氧量(COD)、悬浮物(SS)、叶绿素a (Chla)、溶解氧(DO)和透明度(SD)。TN的测定采用碱性过硫酸钾消解紫外分光光度法(HJ 636-2012)[10]、TP的测定采用钼酸铵分光光度法(HJ 670-2013)[11],COD的测定采用重铬酸钾法(GB 11914-1989)[12],SS的测定采用重量法(GB 11901-1989)[13],Chla的测定采用分光光度法(SL 88-2012)[14],DO采用便携式DO仪(HACH HQ 30 d)测量,SD的测定采用塞氏盘法。

  • 富营养化评价采用《湖泊(水库)富营养化评价方法及分级技术规定》(中国环境监测总站,总站生字[2001]090号)中的综合营养状态指数法[8-9]进行评价。选取Chla、TP、TN和COD 4个指标的浓度值和SD指标值计算各单项指标的营养状态指数FTLI(j)[15-16]和综合营养状态指数FTLI(∑)[8-9],计算方法见式(1)~式(6)。

    式中:FTLI(Chla)为Chla的营养状态指数;CChla为Chla的浓度,mg·m−3FTLI(TP)为TP的营养状态指数;CTP为TP的浓度,mg·L−1FTLI(TN)为TN的营养状态指数;CTN为TN的浓度,mg·L−1FTLI(COD)为COD的营养状态指数;CCOD为COD的浓度,mg·L−1FTLI(SD)为SD的营养状态指数;hSD为透明度,m;FTLI(∑)为综合营养状态指数;Wj为第j种参数的营养状态指数的相关权重;FTLI(j)为第j种参数的营养状态指数。

    以Chla作为基准参数,则第j种参数的归一化的相关权重Wj的计算方法见式(7)。

    式中:rij的取值参考相关文献中的方法[17-19]Wj为相关权重。

    以计算得到的FTLI(∑)为依据,采用 0~100 的一系列连续数值对水体营养程度进行分级评价。FTLI(∑)<30为贫营养(oligotropher),30≤FTLI(∑)≤50为中营养(mesotropher),50< FTLI(∑)≤60为轻度富营养(light eutropher),60< FTLI(∑)≤70为中度富营养(middle eutropher),FTLI(∑)>70为重度富营养(hyper eutropher)。在同一营养状态下,FTLI(∑)越高,水体营养程度越严重。

    采用SPSS(19.0)软件进行数据处理与分析,使用Excel软件作图并对数据进行分析。

  • 2015—2017年,湿地水系TN、TP年平均浓度变化见图2。近3年来,水系各采样点TN、TP浓度逐年呈现下降趋势,水体水质逐年略有提升。水系Ⅰ区沿水流方向,各年度TN、TP浓度均呈现下降趋势,TN、TP浓度沿流程从1号采样点6.5~9.0 mg·L−1、0.35~0.46 mg·L−1下降到6号采样点4~5 mg·L−1、0.1~0.15 mg·L−1,这表明再生水作为主要补水水源输入了高浓度N、P污染物,目前在降雨、径流雨水稀释作用和植物(水体周边挺水植物较多、沉水植物较少)、微生物、动物等组成的湿地生态系统净化作用下,TN、TP污染物浓度逐步下降,但净化效率整体还不高,水系末端6号采样点TN、TP浓度离地表水IV类标准(TN 1.5 mg·L−1、TP 0.1 mg·L−1)还有一定的差距。水系Ⅱ区沿水流方向,各年度TN、TP浓度呈现先下降再上升的趋势,除9号采样点TN外,其余各点TN、TP浓度基本在0.3~1.5 mg·L−1、0.02~0.05 mg·L−1波动,均达到了地表水Ⅳ类标准,水体水质整体较好,这主要是径流雨水作为主要补水水源输入的N、P污染物浓度较低和生态系统自净作用的结果。

  • 2015—2017年,湿地水系COD、SS年平均浓度的变化见图3。近3年来,沿水流方向,水系Ⅰ区和Ⅱ区COD年均浓度均呈现上升趋势,这可能是由于内源性底泥释放、未收割水生植物季节性凋落降解和地表径流等外源性输入所致。水系Ⅰ区COD年均为12~20 mg·L−1,除个别点的单次监测值外,各点COD均达到地表水Ⅳ类标准。水系Ⅱ区COD年均在10~15 mg·L−1,达到地表水Ⅳ类标准,个别点甚至达到地表水Ⅲ类标准。水系Ⅰ区各水样点COD显著高于Ⅱ区,主要是由于补水水源不同所致。水系中SS年均浓度变化规律性不强、波动较大,且Ⅰ区所有点SS年均浓度均高于再生水厂尾水SS浓度限值10 mg·L−1,主要是由于SS受降雨、沉水植物种植情况、鱼类和人类活动干扰等影响较大所致。

  • 2015—2017年,湿地水系Chla、DO年平均浓度变化见图4。近3年来,水系Ⅰ区Chla浓度沿水流方向均增加了4~7倍,整体呈现显著上升趋势,最大值接近0.035 mg·L−1,这与东莞燕岭湿地水体Chla变化规律[20]一致。同时,水系Ⅰ区DO整体呈现稳定的上升趋势,各点DO浓度均达到地表水Ⅲ类标准规定的5 mg·L−1,3号~6号采样点DO浓度(2017年5号点除外)甚至远大于地表水Ⅰ类标准规定的7.5 mg·L−1(饱和率超过90%)。在现场湿地水体流动性较差和透明度小于1 m的情况下,Chla和DO均呈现显著上升趋势且处于较高浓度水平,主要是由于水体中藻类等浮游植物大量生长繁殖及泌氧所致。水系Ⅱ区Chla、DO浓度也呈现上升趋势,但明显低于水系Ⅰ区浓度值。

  • 2016年3月—2017年2月,湿地水系TN、TP、Chla和COD 4个指标的季节变化和空间变化规律见图5。从图5(a)图5(b)看出,水系Ⅰ区各点N、P污染物浓度均为冬季最高,秋季次之,春夏季节相对较低,同时在夏季,N、P污染物浓度沿水流方向下降的趋势最为明显,春季和秋季次之,冬季最不显著。这一方面与再生水厂尾水水质的季节变化规律相同,另一方面也表明,植物、微生物、动物等组成的湿地生态系统对N、P污染物的协同净化效率受季节气候的影响显著,净化效率从高到低依次是夏季、春季、秋季、冬季。水系Ⅱ区N、P污染物浓度随季节变化呈现与Ⅰ区相同的规律,但由于径流雨水N、P污染负荷较低,N、P污染物浓度随空间变化的规律不明显。

    图5(c)看出,水系Ⅰ区各点Chla含量在冬季、夏季、春季相对偏高,在秋季相对最低。与此同时,水系Ⅰ区Chla含量沿水流方向除秋季呈稳定上升趋势外,在春季、夏季和冬季都呈现先上升后下降的趋势,分别在4号、3号和5号采样点达到季节最高,且冬季Chla含量在4号、5号和6号采样点均显著高于其他季节各点,并在5号采样点上达到全年最高。这主要是由于湿地水体核心区域3号、4号和5号采样点挺水植物较多和沉水植物相对较多,在春、夏、秋生长季节,植物和微生物协同去除氮磷作用较为显著,而且高等水生植物与微生物互作的化感作用还在一定程度上抑制藻类生长[21]。冬季再生水厂尾水营养负荷较高,而湿地生态系统净化效率最低,大量挺水植物未收割,植物残体在水中分解,造成二次污染,从而造成冬季可见的大量冷水性藻类增殖和Chla含量显著增加。水系Ⅱ区各点Chla浓度变化趋势为秋季、夏季高于春季、冬季,但并没有在冬季达到全年最高,整体处于较低水平。从图5(d)看出,水系Ⅰ区COD春季、冬季相对较高,夏季、秋季相对较低,不同季节沿水流方向变化规律不强。水系Ⅱ区COD由高到低为春季、夏季、秋季、冬季,沿水流方向略有上升趋势。由于补水水源COD负荷不同,水系Ⅱ区COD明显低于Ⅰ区,且COD波动范围较小,均可达地表水Ⅲ类标准。

  • 2017年,湿地水体富营养化程度评价见表1。从表1看出,水系Ⅰ区6个点综合营养状态指数FTLI(∑)均为60~70,Ⅱ区3个点为30~60,Ⅰ区整体处于中度富营养状态,Ⅱ区整体处于中营养状态。水系Ⅰ区富营养程度较Ⅱ区明显严重,这主要是由于Ⅰ区再生水厂尾水(TN 15 mg·L−1、TP 0.5 mg·L−1) N、P营养盐输入量较大,而水系Ⅱ区径流雨水(TN 1.5 mg·L−1、TP 0.1 mg·L−1) N、P营养盐输入量较小。显然水系Ⅱ区也整体呈现一定的恶化趋势,9号采样点附近水体处于轻度富营养状态,这是由于目前湿地水系存在水体流动性较差、以沉水植物为主的生态系统构建不完善和大量未收割挺水植物的二次污染等现象。水系Ⅰ区水体由于N、P营养盐常年处于较高浓度水平,已引起Ⅰ区水体藻类等浮游植物大量生长繁殖,进而导致Ⅰ区水体富营养化和Chla、DO维持在较高浓度水平。

  • 水体富营养化是由于水体中TN、TP等污染物浓度满足藻类生长条件,引起藻类数量、密度呈几何倍数增长和Chla浓度显著上升的现象,同时藻类的代谢可引起水体DO、SS的动态变化。利用SPSS(19.0)软件对湿地水体主要水质指标进行了K-S正态分布检验,各指标样本Sig.=0.2>0.05,服从正态分布,分析结果见表2。可以看出,Chla与TP、TN在0.01水平下呈显著相关(P<0.01),相关系数为−0.993、−0.973;与SS在0.05水平下呈显著相关(P<0.05),且相关系数为−0.761,与COD、DO在0.01水平下呈显著相关(P<0.01),相关系数为0.944、0.918,这与已有研究结论[19-20]一致。Chla与污染物指标的相关分析表明,当Chla浓度显著上升时,藻类季节性生长繁殖会引起水体TN、TP、SS浓度显著降低,水体COD、DO浓度增加,水体透明度降低。同时,DO与TP、TN在0.05水平下呈显著相关(P<0.05),相关系数分别为−0.891、−0.861,表明在好氧条件下,水体生态系统有一定的净化能力,TN、TP浓度降低;相反在厌氧情况下,湿地净化能力丧失,TP、TN浓度上升。这是因为,藻类生长繁殖的过程是吸收消耗污染物和泌氧的过程,可使TP、TN浓度降低,DO浓度增加;然而藻类生命周期较短,当大面积藻类覆于水面,藻类新陈代谢结束后,其残体腐烂会消耗大量DO,吸收的营养物质会再次释放到水中,造成二次污染,引起TP、TN浓度再次上升。水体局部区域浮萍、满江红、水葫芦等一年生浮水植物的季节性繁殖导致的水质波动也是同理。在水体流动性欠佳、活性污泥生物脱氮除磷效果受限的情况下,湿地植物的季节性生长对氮、磷营养物浓度变化有显著影响。近3年来,湿地水体水质数据相对稳定,水系Ⅰ区呈现中度富营养化趋势,没有出现Chla、DO浓度显著下降和TN、TP浓度显著升高的情况,正如现场可见的湿地水体尚未发生大面积藻类腐烂,进而消耗大量DO,造成水体厌氧和出现重度富营养化的情况。

  • 目前,我国再生水回用有关水质标准与地表水环境质量标准相差甚远,对于水流较缓、水环境容量较小和自净能力有限的地表水体,一级A标准尾水长期补水必然导致氮、磷营养盐积累增加,并逐步出现富营养化趋势,因此,有必要系统探讨再生水作为补水水源的城市湿地景观水体富营养化的治理对策。众所周知,湿地景观水体净化能力受补水污染负荷、气候、水文、二次污染等多方面因素的影响。首先,应确保再生水给湿地景观水体输入的氮、磷污染负荷应控制在水环境容量允许水平内,可通过采用污水深度脱氮除磷技术提高再生水的水质[22-26],如日本滋贺县湖南中部净化中心采用深度脱氮除磷处理工艺并执行极其严格的排放标准(TN 5.5 mg·L−1、TP 0.06 mg·L−1),有效保护了琵琶湖生态环境质量[26],还可采用河流等地表水作为补水水源,将再生水补水量控制在合理范围内,或同时控制再生水补水的水质和水量[1]。其次,应结合受纳湿地景观水体的地形、地貌、气候、水文条件,有针对性地采用一些清淤、水系连通、水系循环、生态浮床或多元组合系统[27-31],构建流动性好和以沉水植物为主的健康生态系统,以大幅提高湿地净化能力。最后,应加强城市湿地景观水体的长期维护管理,从而有效控制水体不遭受二次污染,特别是水生植物的季节性收割和藻类、漂浮植物和漂浮垃圾等的及时打捞,这对保持景观水体水质极为重要。

  • 1)城市湿地生态系统对水体氮、磷污染物呈现一定的净化效果,净化效率从高到低依次是夏季、春季、秋季、冬季,但总体净化效率还不高,这是由于本研究的湿地水体流动性较差、沉水植物为主的生态系统构建不完善和大量未收割植物的二次污染所致。

    2)以再生水、径流雨水作为补水水源的2个水系区域分别处于中度富营养、整体中营养,主要是由于再生水补水的氮、磷营养盐输入量远高于径流雨水补水。藻类季节性生长繁殖和Chla浓度显著上升表现为水体中度富营养化,同时引起水体TN、TP和SS浓度显著降低,COD、DO浓度增加和透明度降低。

    3)在系统考虑再生水回用的受纳湿地景观水体的富营养化治理技术对策的基础上,可从再生水补水的水质和水量控制、因地制宜的受纳湿地水体健康生态系统的构建和水体的长期维护管理3个方面进行湿地景观水体富营养化的综合治理。

参考文献 (31)

返回顶部

目录

/

返回文章
返回