-
随着太湖流域地区工业化和城市化进程的不断加快,工业废水和生活污水排放造成了严重的水环境污染问题,建设城镇污水处理厂成为了解决水污染问题的主要途径之一[1-2]。城市污水产生量巨大,因此,污水处理厂在处理污水的过程中往往会消耗大量的能耗。据统计,2017年,太湖流域地区城镇污水处理厂能耗占地区总能耗的0.26%,加上工业废水处理和污泥处理,所占比例超过2%[3]。随着污水处理厂在社会能源的消耗中占比的提高,太湖流域经济的持续发展将会受到越来越严重的影响,因此,对太湖流域污水处理厂的节能降耗已迫在眉睫。
污水处理行业的能耗主要用于电力消耗、药剂消耗和污泥处理处置过程等[4]。科学合理地对城镇污水处理厂能耗进行评价是实现污水处理节能降耗的基础。杨凌波等[5]利用聚类统计法研究了全国529座污水处理厂的能耗分布情况,得出我国污水处理厂能耗水平比较均匀的结论。金昌权等[6]采用单元能耗分析法对北京市某污水处理厂进行了能耗分析,得出的结论是,曝气系统所消耗的能耗在总能耗中所占比例最高为56.5%。BRAVO等[7]使用生命周期评价法对东南亚地区某污水处理厂生命周期全过程能耗进行分析,并在此基础上提出了改善其能耗的措施。
目前,对于污水处理厂运行能耗的研究多以比能耗分析法作为基础,关注不同处理规模下单位处理水量的能耗,即水量比能耗,或是污水处理设备的能耗,而对不同处理工艺下污水处理厂水量比能耗和处理规模之间的关系、污染物削减量比能耗、能耗与日处理水量和耗氧污染物削减量之间的关系等的研究相对较少。本研究调研了太湖流域不同工艺与处理规模的204座污水处理厂,探究了太湖流域污水处理厂能耗现状、水量比能耗、污染物削减量比能耗、能耗与日处理水量和耗氧污染物削减量之间的关系,为太湖流域污水处理厂节能降耗提供了参考。
太湖流域城镇污水处理厂能耗评价与分析
Energy consumption evaluation and analysis of wastewater treatment plants in Taihu basin, China
-
摘要: 为分析太湖流域污水处理厂的能耗情况,以比能耗分析法为基础,结合多种统计学方法,探究了太湖流域污水处理厂能耗现状、水量比能耗、污染物削减量比能耗、能耗与日处理水量和耗氧污染物削减量之间的关系。结果表明:太湖流域污水处理厂2017年能耗均值为0.458 kWh·m−3,高于发达国家污水处理厂能耗平均值;太湖流域处理规模大于5×104 m3·d−1的污水处理厂水量比能耗基本稳定在0.33 kWh·m−3,而处理规模小于5×104 m3·d−1的污水处理厂水量比能耗波动较大;化学需氧量(COD)和氨氮(
${\rm{NH}}_4^{+} $ -N)削减量与污染物削减量比能耗之间均存在幂函数关系,在每个污染物出水浓度区间内,均呈现削减污染物量越多,污染物削减量比能耗越低的趋势;污水处理厂能耗与日处理水量和耗氧污染物削减量之间存在线性关系。因此,对污水处理厂的节能降耗须重点关注污染物削减量比能耗的降低。Abstract: In order to analyze the energy consumption of wastewater treatment plants (WWTPs) in Taihu basin, based on specific energy consumption, the energy consumption status, wastewater specific energy consumption and specific energy consumption of pollutant reduction, as well as the linear relationship between the energy consumption and wastewater volume and the reduction of oxygen-consuming pollutants of WWTPs in Taihu Basin were explored with combination of various statistical methods. The results show that the average energy consumption of WWTPs in Taihu basin in 2017 are 0.458 kWh·m−3, which are considerably higher than the average values of WWTPs in developed countries. The wastewater specific energy consumption of WWTPs with treatment capacity greater than 5×104 m3·d−1 in Taihu Basin is basically stable at 0.33 kWh·m−3, while the wastewater specific energy consumption of WWTPs with treatment capacity less than 5×104 m3·d−1 presents great fluctuation. There is power function relationship between specific energy consumption of pollutant reduction and the reduction of chemical oxygen demand (COD) and ammonia nitrogen(${\rm{NH}}_4^{+} $ -N). Within the effluent concentration range of each pollutant, the more reduction of pollutants is during the wastewater treatment process, the lower specific energy consumption of pollutant reduction is. There is a linear relationship between the energy consumption and wastewater volume or the reduction of oxygen-consuming pollutants. Therefore, attention should be paid to the specific energy consumption of pollutant reduction to save energy and reduce consumption in WWTPs. -
表 1 日处理水量-水量比能耗函数关系
Table 1. Functional relation between wastewater treatment volume and wastewater specific energy consumption
水量/(104 m3·d−1) 函数关系 A/O A2/O 氧化沟 SBR MBR <1 y=0.436x0.164 2
R2=0.091 7y=0.401 3x−0.141
R2=0.132 1y=0.380 9x0.247 5
R2=0.351 1y=0.289 6x−0.279
R2=0.227 51~5 y=0.467 5x1.075 9
R2=0.666 8y=0.520 3x−0.253
R2=0.074 7y=0.768 3x−0.644
R2=0.650 4y=0.338 8x0.016 3
R2=0.000 9y=0.792 2x−0.4
R2=0.371 75~10 y=1.372x0.995 9
R2=1y=0.291 7x−0.01
R2=0.000 1y=0.448 8x−0.066
R2=0.022 6y=0.752 5x−0.426
R2=0.674 710~20 y=0.303 5x−0.007
R2=0.000 1y=1.159 5x0.956 2
R2=1y=51.245x−1.858
R2=1y=0.92x−0.295
R2=0.360 1>20 y=12.754x−1.137
R2=0.996 5表 2 COD出水浓度-比能耗关系
Table 2. Relationship between COD effluent concentration and COD specific energy consumption
出水水质/(mg·L−1) COD比能耗/(kWh·kg−1) 均值 最小值 最大值 <15 2.28 1.35 3.50 15~20 2.19 0.81 9.62 20~30 2.97 0.76 14.69 30~40 1.78 0.42 4.80 40~50 1.77 0.72 4.10 表 3
${{\bf{NH}}_4^{+}} $ -N出水浓度-比能耗关系Table 3. Relationship between
${\rm{NH}}_4^{+} $ -N effluent concentration and${\rm{NH}}_4^{+} $ -N specific energy consumption出水浓度/(mg·L−1) ${\rm{NH}}_4^{+} $ -N比能耗/(kWh·kg−1)均值 最小值 最大值 <1 25.78 8.70 150.12 1~3 37.40 8.68 134.85 3~5 21.35 7.79 88.36 -
[1] 管凛, 荆肇乾, 熊顺华, 等. 太湖流域污水处理厂升级改造的措施与思考[J]. 自然灾害学报, 2011, 20(5): 65-68. [2] 杨敏, 颜秀勤, 孙雁, 等. A2/O-MBR工艺城镇污水处理厂能耗特征与运行优化[J]. 给水排水, 2016, 52(12): 44-47. doi: 10.3969/j.issn.1002-8471.2016.12.009 [3] 陆桂勇, 刘礼祥, 杨旭良, 等. 城市污水厂提标后全流程节能优化控制[J]. 中国给水排水, 2013, 29(4): 94-99. doi: 10.3969/j.issn.1000-4602.2013.04.025 [4] LONGO S, D ANTONI B M, BONGARDS M, et al. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement[J]. Applied Energy, 2016, 179(5): 1251-1268. [5] 杨凌波, 曾思育, 鞠宇平, 等. 我国城市污水处理厂能耗规律的统计分析与定量识别[J]. 给水排水, 2008, 34(10): 42-45. doi: 10.3321/j.issn:1000-4602.2008.10.011 [6] 金昌权, 汪诚文, 曾思育, 等. 污水处理厂能耗特征分析方法与节能途径研究[J]. 给水排水, 2009, 45(S1): 270-274. [7] BRAVO L, FERRER I. Life cycle assessment of an intensive sewage treatment plant in Barcelona (Spain) with focus on energy aspects[J]. Water Science & Technology, 2011, 64(2): 440-447. [8] TANG Y, GUO L L, HONG C Y, et al. Seasonal occurrence, removal and risk assessment of 10 pharmaceuticals in two sewage treatment plants of Guangdong, China[J]. Environmental Technology, 2017, 40(4): 458-469. [9] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12-15. doi: 10.3969/j.issn.1002-8471.2018.06.003 [10] MIZUTA K, SHIMADA M. Benchmarking energy consumption in municipal wastewater treatment plants in Japan[J]. Water Science & Technology, 2010, 62(10): 2256-2262. [11] 徐靖. 新加坡第五个水回用厂正式投运[J]. 水处理技术, 2017, 43(3): 67-70. [12] 郝晓地, 孟祥挺, 付昆明. 新加坡再生水厂能耗目标及其技术发展方向[J]. 中国给水排水, 2014, 30(24): 7-11. [13] ELAWWAD A, NAGUIB A, ABDELHALIM H. Modeling of phenol and cyanide removal in a full-scale coke-oven wastewater treatment plant[J]. Desalination & Water Treatment, 2016, 57(52): 1-13. [14] AN D, QU F, LIANG H, et al. A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage[J]. Chemical Engineering Journal, 2013, 223(3): 908-914. [15] ZHANG P Y, QU Y, YU D S, et al. Comparison of heterotrophic nitrification and aerobic denitrification system by strain qy37 and its accelerating removal characteristic of ${{\rm{NH}}_4^{+}} $ -N[J]. Environmental Science, 2010, 31(8): 1819-1826.