-
河流自净是一个涉及物理、化学和生物的复杂过程,是河流在一定空间内恢复其洁净状态的现象[1-2]。河流自净能力的恢复是城市生态环境建设和景观保护的重要环节,而目前城市内河流普遍采用“三面光”的梯形硬质化渠道,河水流速快,沉降性能低,改变了原有自然生态本底和水文特征,削弱了河流的自净能力。目前,河流只监测基本的水文参数和水质参数,同时,监测河流健康状况的方法对监测员的技术要求高且不能做到在线实时监测。因此,迫切需要一种在线监测河流水质参数和自净能力的方法。
荧光和紫外光谱技术因其具有灵敏度高、用量少、测量简单、不消耗化学试剂等优点[3],近年来,被广泛应用于河流、湖泊、海洋等自然水体中污染物的监测[4-5]以及污水处理厂的过程控制[6-7]、工业废水中特定污染物的鉴别[8-9]。三维激发发射矩阵(3D-EEM)光谱,被称为“荧光指纹”,被广泛应用于检测废水、表征河流中溶解性有机物(DOM)[10]。紫外可见光谱分析中特定波长254 nm处的吸光度值(UV254)可作为总有机碳(TOC)和溶解性有机碳(DOC)的替代参数[11-12]。河流净化过程包括稀释、沉淀、曝气等多种化学与生物机制,可以采用数学模型进行评价[13],KARRASCH等[14]从浮游微生物的胞外酶角度分析得出,工业废水使微生物耐受性增强,降解能力提高,赵长森等[15]采用生物学指数与水生物指示环境结合的方法评价水样污染程度、生态系统稳定性与河流及水库的健康程度。
河流水质与自净能力的传统测定方法及参数选取较为复杂,而从河流微生物的生理状态的角度分析河流的自净能力鲜有研究。本研究将人工净化与河流自净功能的协同作用发挥出来,以渭河流域西安段的河流及污水处理厂为考察对象,采用三维荧光光谱、紫外光谱联用呼吸图谱的方法,考察了不同性质的河流及污水处理厂各处理单元中微生物与有机物之间的作用关系,探讨了光谱法与呼吸图谱法联用表征河流状态及自净能力的可行性,以期得到河流水质和健康状况的综合评判方法。
光谱与呼吸图谱联用判定河流污染状态与自净能力
Hybrid use of spectrum and respirogram for the evaluation of river pollution and self-purification
-
摘要: 河流污染状态一般采用化学水质或生物等指标单独描述,目前尚缺少简便易行且可同时从化学与生物角度进行定量描述的指标。针对这一问题,采用三维荧光光谱、紫外吸收光谱与呼吸图谱联用的分析方法研究了纳污河、自然水体与污水处理厂各处理单元水样的溶解性有机物(DOM)的空间分布特征与河流微生物的呼吸特征。结果表明,光谱法可快速对河流有机污染物的种类进行辨别,而呼吸图谱具有识别河流自净能力的特点,其中类色氨酸(T峰与D峰)、类酪氨酸(S峰)、腐殖质(C峰)、富里酸(A峰)是指示不同污染程度的重要指标。通过呼吸图谱与荧光光谱联用(T峰)可快速对污染程度和自净能力进行区分,从而为河流的管理与自净能力的恢复提供参考。Abstract: River pollution status is generally described using chemical water quality or biological activity index. However, the reports on the easy-to-use index from both chemical and biological perspectives were limited. Three-dimensional fluorescence spectroscopy, ultraviolet absorption spectroscopy and respirogram were employed to study the spatial distribution characteristics of dissolved organic matter (DOM) and bacteria respirogram in the river and the wastewater treatment plant, respectively. Results showed that the spectroscopy method could quickly discriminate the types of river pollutants, and respirogram was characterized by identifying the self-purification ability of rivers. The tryptophan (peaks T and peak D), tyrosine-like (peak S), humic acid (peak C) and fulvic acid (peak A) were important indicators that could well indicate the degree of different pollution status. Therefore, the hybrid use of respirogram and fluorescence spectrum (peak T) can well indicate the pollution status and the biological purification capability, which could provide reference for the promising application in river management.
-
表 1 3类水体的不同断面的水质、光谱及呼吸图谱特征参数
Table 1. Characteristic parameters of water quality, spectra and respirogram of different sections of three types of water bodies
水样类型 采样断面编号 COD/(mg·L−1) 光谱特征参数 呼吸图谱特征参数/(mg·(L·h)−1) UV254 FT FC HIX BIX OURS OURe OURen OURT 纳污河 A1 120.20 0.25 7 893 3 710 0.49 0.94 6.21 2.04 1.59 10.27 A2 89.50 0.19 6 122 2 967 0.58 0.99 2.43 0.87 0.72 4.53 A3 73.00 0.18 4 547 2 884 0.61 0.97 2.99 0.91 0.74 6.50 A4 45.00 0.16 3 735 2 732 0.68 0.94 1.46 0.62 1.87 3.05 A5 54.00 0.16 3 756 2 715 0.67 1.00 0.65 0.32 0.29 1.50 A6 39.00 0.14 3 232 2 285 0.67 1.04 1.84 0.88 0.84 5.54 A7 32.00 0.13 2 885 2 416 0.68 1.00 0.88 0.50 0.51 3.07 A8 25.00 0.11 2 474 1 607 0.64 0.97 1.70 0.31 0.47 4.81 自然水体 N1 18.50 0.06 1 267 785 0.63 0.93 1.20 0.49 0.44 5.10 N2 23.00 0.07 2 153 1 297 0.50 1.05 0.51 0.88 0.81 4.23 N3 22.50 0.11 2 722 1 809 0.64 1.08 0.39 0.58 0.60 2.25 N4 26.50 0.08 2 448 1 883 0.55 1.03 1.03 0.70 0.76 5.82 污水处理厂 W1 132.00 0.25 9 999 4 047 0.46 0.95 4.85 1.49 1.41 6.26 W2 127.00 0.25 8 868 4 050 0.46 0.96 4.18 1.21 1.07 8.56 W3 161.00 0.38 4 885 4 006 0.72 1.01 21.01 3.58 25.84 24.43 W4 145.00 0.3 3 973 3 259 0.68 0.96 3.97 1.39 14.20 16.81 W5 123.00 0.25 3 654 4 669 0.73 0.95 0.77 0.87 0.98 2.59 W6 32.00 0.14 3 574 2 782 0.68 1.03 2.48 0.67 0.64 8.22 W7 22.50 0.12 3 200 2 712 0.71 1.00 1.91 0.86 0.88 8.81 -
[1] VAGNETTI R, MIANA P, FABRIS M, et al. Self-purification ability of a resurgence stream[J]. Chemosphere, 2003, 52(10): 1781-1795. doi: 10.1016/S0045-6535(03)00445-4 [2] DEMARS B O L, MANSON J R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review[J]. Water Research, 2013, 47(1): 1-15. doi: 10.1016/j.watres.2012.09.054 [3] 曹昌丽, 何桂英. 城镇化河流溶解性有机质的荧光特性与水质相关性: 以宁波市北仑区芦江为例[J]. 环境科学, 2018, 39(4): 1560-1567. [4] HUDSON N, BAKER A, REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: A review[J]. River Research and Applications, 2007, 23(6): 631-649. doi: 10.1002/(ISSN)1535-1467 [5] 姚璐璐, 涂响, 于会彬. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416. [6] 帅磊, 李卫华, 申慧彦. 三维荧光光谱评价污水处理厂COD去除效率[J]. 环境工程学报, 2016, 10(4): 2127-2131. doi: 10.12030/j.cjee.20160486 [7] REYNOLDS D M, AHMAD S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique[J]. Water Research, 1997, 31(8): 2012-2018. doi: 10.1016/S0043-1354(97)00015-8 [8] KUZNIZ T, HALOT D, MIGNANI A G, et al. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 231-237. doi: 10.1016/j.snb.2006.09.012 [9] 吴静, 曹知平, 谢超波. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437-2441. [10] 何伟, 白泽琳, 李一龙. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. [11] 蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2): 61-65. [12] 黄廷林, 方开凯, 张春华. 利用UV-Vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性[J]. 环境科学, 2016, 37(12): 4577-4585. [13] GONZÁLEZ S O, ALMEIDA C A, CALDERÓN M, et al. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations[J]. Environmental Science & Pollution Research International, 2014, 21(18): 10583-10593. [14] KARRASCH B, PARRA O, CID H, et al. Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobío River, Chile[J]. Science of the Total Environment, 2006, 359(1/2/3): 194-208. [15] 赵长森, 夏军, 王纲胜. 淮河流域水生态环境现状评价与分析[J]. 环境工程学报, 2008, 2(12): 1698-1704. [16] 董雯, 李怀恩, 李家科. 城市重污染河流水质特征分析: 以皂河为例[J]. 水力发电学报, 2012, 31(4): 72-77. [17] 薛亮, 赵振斌, 延军平. 西安市灞河湿地鸟类生境构成与保护价值评价研究[J]. 干旱区资源与环境, 2008, 22(8): 116-119. doi: 10.3969/j.issn.1003-7578.2008.08.022 [18] 黄满红, 李咏梅, 顾国维, 等. 呼吸计量法在活性污泥系统废水特性测定中的应用[J]. 工业水处理, 2005, 25(9): 58-60. doi: 10.3969/j.issn.1005-829X.2005.09.018 [19] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710. [20] HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881. doi: 10.1016/j.watres.2008.11.027 [21] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(19): 742-746. [22] MAQBOOL T, CHO J, HUR J. Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation[J]. Water Research, 2017, 123: 751-760. doi: 10.1016/j.watres.2017.07.033