[1] VAGNETTI R, MIANA P, FABRIS M, et al. Self-purification ability of a resurgence stream[J]. Chemosphere, 2003, 52(10): 1781-1795. doi: 10.1016/S0045-6535(03)00445-4
[2] DEMARS B O L, MANSON J R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review[J]. Water Research, 2013, 47(1): 1-15. doi: 10.1016/j.watres.2012.09.054
[3] 曹昌丽, 何桂英. 城镇化河流溶解性有机质的荧光特性与水质相关性: 以宁波市北仑区芦江为例[J]. 环境科学, 2018, 39(4): 1560-1567.
[4] HUDSON N, BAKER A, REYNOLDS D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: A review[J]. River Research and Applications, 2007, 23(6): 631-649. doi: 10.1002/(ISSN)1535-1467
[5] 姚璐璐, 涂响, 于会彬. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416.
[6] 帅磊, 李卫华, 申慧彦. 三维荧光光谱评价污水处理厂COD去除效率[J]. 环境工程学报, 2016, 10(4): 2127-2131. doi: 10.12030/j.cjee.20160486
[7] REYNOLDS D M, AHMAD S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique[J]. Water Research, 1997, 31(8): 2012-2018. doi: 10.1016/S0043-1354(97)00015-8
[8] KUZNIZ T, HALOT D, MIGNANI A G, et al. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra[J]. Sensors and Actuators B: Chemical, 2007, 121(1): 231-237. doi: 10.1016/j.snb.2006.09.012
[9] 吴静, 曹知平, 谢超波. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437-2441.
[10] 何伟, 白泽琳, 李一龙. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372.
[11] 蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2): 61-65.
[12] 黄廷林, 方开凯, 张春华. 利用UV-Vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性[J]. 环境科学, 2016, 37(12): 4577-4585.
[13] GONZÁLEZ S O, ALMEIDA C A, CALDERÓN M, et al. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations[J]. Environmental Science & Pollution Research International, 2014, 21(18): 10583-10593.
[14] KARRASCH B, PARRA O, CID H, et al. Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobío River, Chile[J]. Science of the Total Environment, 2006, 359(1/2/3): 194-208.
[15] 赵长森, 夏军, 王纲胜. 淮河流域水生态环境现状评价与分析[J]. 环境工程学报, 2008, 2(12): 1698-1704.
[16] 董雯, 李怀恩, 李家科. 城市重污染河流水质特征分析: 以皂河为例[J]. 水力发电学报, 2012, 31(4): 72-77.
[17] 薛亮, 赵振斌, 延军平. 西安市灞河湿地鸟类生境构成与保护价值评价研究[J]. 干旱区资源与环境, 2008, 22(8): 116-119. doi: 10.3969/j.issn.1003-7578.2008.08.022
[18] 黄满红, 李咏梅, 顾国维, 等. 呼吸计量法在活性污泥系统废水特性测定中的应用[J]. 工业水处理, 2005, 25(9): 58-60. doi: 10.3969/j.issn.1005-829X.2005.09.018
[19] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2015, 37(24): 5701-5710.
[20] HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881. doi: 10.1016/j.watres.2008.11.027
[21] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(19): 742-746.
[22] MAQBOOL T, CHO J, HUR J. Spectroscopic descriptors for dynamic changes of soluble microbial products from activated sludge at different biomass growth phases under prolonged starvation[J]. Water Research, 2017, 123: 751-760. doi: 10.1016/j.watres.2017.07.033