-
有机物料来源广泛、成本低,能够补充土壤养分和改良土壤,提高重金属生物可利用性,促进植物积累[1-3]。黄腐酸(fulvic acid)具有多种活性官能团,施用后能够提高土壤镉的有效性[4-5]。紫云英(Astragalus sinicus L.)作为一种我国南方常见的绿肥,可以增加作物产量,提高土壤重金属铜和锌的活性[6]。
超积累植物修复土壤重金属具有成本低、不破坏土壤结构等优点。利用电场促进植物吸收是近年来土壤重金属修复新技术的研究之一。陈海峰等[7]和仓龙等[8]研究发现,直流电场和螯合剂联用,可促进黑麦草吸收重金属。而施加交流电场可避免电场两极偏酸或碱,抑制植物生长的现象。LIM等[9]发现,将超积累植物印度芥菜和交流电场联用,可显著提高印度芥菜对Pb的积累。BI等[10]通过施加交流电场,促进了植物生长和重金属富积。然而,有机物料和交流电场联用对超积累植物修复土壤重金属的作用还鲜有报道。
本研究探讨了不同交流电场强度对超积累植物东南景天积累重金属的修复效果,并在此基础上,通过探索适宜的交流电场强度和有机物料的施加,达到提高东南景天修复重金属污染土壤效率的目的,对缩短植物修复周期[10-11]和促进研究成果转化具有现实意义。
交流电场联合有机物料强化东南景天修复重金属镉污染土壤
AC electric field combined with organic materials enhancing Sedum alfredii Hance phytoremediation of cadmium-contaminated soil
-
摘要: 针对土壤重金属污染植物修复效率低的问题,采用盆栽实验,通过施加多种强度的交流电场(0、0.5、1.0 V·cm−1)和不同种类的有机物料(黄腐酸钾、紫云英),研究了交流电场及其与有机物料联合对重金属超积累植物东南景天修复重金属镉污染土壤效率的作用。结果表明,交流电场促进了东南景天的生长和对重金属的吸收,以0.5 V·cm−1作用最佳,在电场处理组20 d后东南景天地上部Cd积累量比不施加电场的处理组提高了48.1%。交流电场和有机物料联用可以进一步提升东南景天对土壤镉的累积,施加黄腐酸钾处理组有利于土壤酸可提取态Cd的提高,比对照组提高了16.35%。在交流电场为0.5 V·cm−1条件下,以0.3%施用效果最佳,施加黄腐酸钾和紫云英分别是对照组(施加交流电场,不施加有机物料)的3.65倍和1.73倍。有机物料和交流电场的共同作用极大地促进了东南景天镉的积累。Abstract: To improve the phytoremediation efficiency of heavy metals contaminated soils, soil pot experiments were carried out to study the effect of alternating current (AC) electric field combining with organic materials on Sedum alfredii (hyper-accumulator) remediation efficiency of cadmium (Cd) -contaminated soil. Different AC electric field gradients (0, 0.5 and 1.0 V·cm−1) and different organic materials (potassium fulvate and milk vetch) (with application rates of 0.1%, 0.3%, 0.5%) treatments were tested. The results showed that the AC electric field could promote the growth of Sedum alfredii and its uptake of heavy metals, and 0.5 V·cm−1 AC electric field presented the best effect. After 20 d AC electric field treatment, the Cd accumulation in the aboveground part of Sedum alfredii was 48.1% higher than that without AC electric field enhancement. The combination of AC electric field and organic materials further enhanced the absorption of soil heavy metals by Sedum alfredii. The application of two organic materials (potassium fulvate and milk vetch) had positive effects on the soil heavy metal availabilities. Potassium fulvate application elevated the soil acid-extractable Cd concentration, which was 16.35% higher than that of the control. At AC electric field of 0.5 V·cm−1 and 0.3% organic material of potassium fulvate or milk vetch, the greatest enhancement on Cd accumulation in plant shoots of Sedum alfredii Hance occurred, which was 3.65 and 1.73 times higher than that of control(only with AC electric field enhancement), respectively. Consequently, heavy metal accumulation in plant shoots of Sedum alfredii was greatly promoted by the combined application of organic materials and AC electric field.
-
表 1 供试土壤的基本性质
Table 1. Basic property of tested soils
供试
土壤pH 有机碳/
(mg·kg−1)碱解氮/
(mg·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)全Cu/
(mg·kg−1)全Zn/
(mg·kg−1)全Pb/
(mg·kg−1)全Cd/
(mg·kg−1)有效Cu/
(mg·kg−1)有效Zn/
(mg·kg−1)有效Pb/
(mg·kg−1)有效Cd/
(mg·kg−1)Ⅰ 4.69 3.98 270.48 60.5 354 670.3 1 293.69 444.57 7.61 389.24 600.47 207.96 1.23 Ⅱ 6.23 34.04 246.96 74.86 365.5 84.64 428 109.1 2.65 8.14 54.2 16.8 0.6 表 2 供试有机物料的基本性质
Table 2. Basic properties of organic materials for test
供试物料 pH 有机碳/(g·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 全钾/(g·kg−1) 全Cu/(mg·kg−1) 全Zn/(mg·kg−1) 全Pb/(mg·kg−1) 全Cd/(mg·kg−1) 紫云英 6.78 463.3 37.16 0.64 27.12 10.73 30.3 0.1 0.01 黄腐酸钾 7.46 234.61 99.86 0.16 4 2.95 8.13 4.79 0.15 表 3 不同电压梯度对东南景天地上部生物量的影响
Table 3. Biomass of Sedum alfredii Hance shoots affected by different voltage gradients
通电时间/d 电压梯度/
(V·cm−1)单株鲜重/
(g·株−1)单株干重/
(g·株−1)20 0 2.82a 0.17a 20 0.5 3.33a 0.17a 20 1.0 3.20a 0.18a 40 0 4.49b 0.30a 40 0.5 6.29a 0.35a 40 1.0 5.59a 0.35a 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 4 不同电压梯度对东南景天地上部重金属含量的影响
Table 4. Heavy metal concentrations in Sedum alfredii shoots affected by different voltage gradients
通电时间/d 电压梯度/(V·cm−1) Cu/(mg·kg−1) Zn/(mg·kg−1) Pb/(mg·kg−1) Cd/(mg·kg−1) 20 0 12.97b 10 537.27c 15.78b 208.55b 20 0.5 21.22a 12 032.64a 20.39a 297.94a 20 1.0 21.53a 11 365.41b 19.93a 207.51b 40 0 16.39b 9 837.44b 10.66b 163.61a 40 0.5 18.02ab 11 064.16a 13.99a 148.63a 40 1.0 18.42a 10 175.46b 13.68a 136.80a 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 5 不同电压梯度对东南景天重金属积累量的影响
Table 5. Effects of different voltage gradients on heavy metal accumulation in Sedum alfredii shoots
通电时间/d 电压梯度/(V·cm−1) Cu/(mg·kg−1) Zn/(mg·kg−1) Pb/(mg·kg−1) Cd/(mg·kg−1) 20 0 2.18b 1 988.39a 2.43b 33.91b 20 0.5 4.14a 2 101.06a 3.57a 50.22a 20 1.0 4.15a 2 061.23a 3.32ab 40.22b 40 0 5.22b 3 276.41b 3.58b 47.55b 40 0.5 6.57a 4 152.46a 4.90a 58.91a 40 1.0 6.73a 3 826.83ab 4.76a 46.37b 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 6 有机物料和交流电场对东南景天地上部生长和重金属含量的影响
Table 6. Effect of organic material and AC electric field on plant growth andheavy metal concentrations in shoots of sedum alfredii
处理组 鲜重/(g·株−1) 干重/(g·株−1) Cu/(mg·kg−1) Zn/(mg·kg−1) Pb/(mg·kg−1) Cd/(mg·kg−1) 0+0HF 3.57c 0.23c 8.35a 5 503.05c 3.28c 110.35b 0+0.3HF 7.75a 0.47ab 8.78a 7 319.47a 5.45ab 123.38ab 0.5+0HF 5.81b 0.32abc 7.35a 6 010.12b 4.21bc 99.86b 0.5+0.3HF 8.56a 0.51a 7.84a 7 068.31a 6.44a 135.80a 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 7 有机物料和交流电场对东南景天地上部单株重金属积累量的影响
Table 7. Effect of organic material and AC electric field on the heavy metal accumulation in Sedum alfredii shoots
处理组 重金属积累量/(μg·株−1) Cu Zn Pb Cd 0+0HF 1.92b 1 225.72d 0.75b 25.31d 0+0.3HF 4.13a 3 441.26b 2.42ab 58.00b 0.5+0HF 2.31b 1 925.28c 1.33b 35.75c 0.5+0.3HF 4.07a 3 617.45a 3.29a 69.17a 表 8 不同处理组对土壤重金属有效性的影响
Table 8. Soil available heavy metal concentrations affected by different treatments
有机物料 Cu/(mg·kg−1) Zn/(mg·kg−1) Pb/(mg·kg−1) Cd/(mg·kg−1) 0.1%黄腐酸钾 14.63ab 55.86a 17.43ab 0.64b 0.3%黄腐酸钾 11.55d 49.02ab 15.03b 0.72ab 0.5%黄腐酸钾 15.08ab 56.27a 17.19ab 0.68ab 0.1%紫云英 13.80ab 52.28ab 16.98ab 0.67ab 0.3%紫云英 11.48d 45.93b 15.52b 0.68ab 0.5%紫云英 15.82a 55.68a 18.84a 0.75a CK 13.49cd 49.95ab 17.12ab 0.65b 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 9 不同处理组对东南景天地上部重金属含量的影响
Table 9. Effect of different treatments on heavy metal concentrations in Sedum alfredii Hance shoots
有机物料 Cu/(mg·kg−1) Zn/(mg·kg−1) Pb/(mg·kg−1) Cd/(mg·kg−1) 0.1%黄腐酸钾 8.98a 5 106.16cd 4.73ab 77.87b 0.3%黄腐酸钾 10.27a 7 511.02a 7.68a 129.32a 0.5%黄腐酸钾 5.66ab 4 072.55d 5.29ab 70.46bc 0.1%紫云英 6.61ab 6 195.01b 5.31ab 84.92b 0.3%紫云英 6.93ab 5 449.83cd 5.48ab 72.00bc 0.5%紫云英 4.25b 3 479.19d 1.32c 40.32c CK 6.11ab 4 937.66cd 3.63bc 71.07bc 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 10 不同处理组对东南景天地上部植物重金属积累的影响
Table 10. Effect of different treatments on heavy metal accumulation in Sedum alfredii Hance shoots
有机物料 Cu/(μg·株−1) Zn/(μg·株−1) Pb/(μg·株−1) Cd/(μg·株−1) 0.1%黄腐酸钾 3.20ab 1 658.65b 1.94ab 23.65b 0.3%黄腐酸钾 3.83a 3 722.15a 2.56a 53.50a 0.5%黄腐酸钾 1.55c 1 315.97b 1.10bc 21.32bc 0.1%紫云英 1.82bc 1 922.73b 1.18bc 25.33b 0.3%紫云英 1.63c 1 538.79b 1.69b 25.40b 0.5%紫云英 1.12c 1 093.23b 0.57c 15.07c CK 2.45abc 978.55b 0.55c 14.64c 注:不同小写字母表示处理组间差异显著(P<0.05)。 表 11 土壤重金属Cd不同形态与理化性质的相关关系
Table 11. Correlations between different soil heavy metal Cd forms andphysicochemical properties
有机质 pH 酸可提取态Cd 可还原态Cd 可氧化态Cd 残渣态Cd 有机质 1 — — — — — pH −0.697** 1 — — — — 酸可提取态Cd 0.093 −0.37 1 — — — 可还原态Cd −0.177 0.135 −0.496* 1 — — 可氧化态Cd 0.203 −0.466 0.249 −0.095 1 — 残渣态Cd −0.383 0.666** −0.33 0.199 −0.855** 1 注:*表示P<0.05;* *表示P<0.01。 表 12 不同处理组对土壤Cd形态的影响
Table 12. Effect of different treatments onsoil cadmium forms
有机物料 可交换态/% 还原态/% 氧化态/% 残渣态/% 0.1%黄腐酸钾 32.96 39.49 5.19 22.36 0.3%黄腐酸钾 32.89 38.81 4.59 23.71 0.5%黄腐酸钾 32.25 40.67 6.43 20.65 0.1%紫云英 30.63 43.41 6.44 19.52 0.3%紫云英 32.52 44.94 5.06 17.48 0.5%紫云英 30.76 41.28 3.99 23.97 CK 29.71 42.42 5.56 22.31 -
[1] 姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2015. [2] 姚桂华, 吴东涛, 胡杨勇, 等. 淹水条件下有机肥对土壤重金属形态转化及迁移的影响[J]. 浙江农业学报, 2016, 28(1): 127-133. doi: 10.3969/j.issn.1004-1524.2016.01.21 [3] 王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193. [4] 李仲谨, 李铭杰, 王海峰, 等. 腐植酸类物质应用研究进展[J]. 化学研究, 2009, 20(4): 103-107. doi: 10.3969/j.issn.1008-1011.2009.04.028 [5] SUNG K, KIM K S, PARK S. Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosm planted with phragmites communis by humic acids addition[J]. International Journal of Phytoremediation, 2013, 15(6): 536-549. doi: 10.1080/15226514.2012.723057 [6] 丁炳红. 紫云英等有机物料还田对稻田氮磷损失及重金属活性的影响[D]. 杭州: 浙江农林大学, 2012. [7] 陈海峰, 周东美, 仓龙, 等. 垂直电场对EDTA络合诱导铜锌植物吸收及其迁移风险的影响[J]. 土壤学报, 2007, 44(1): 174-178. doi: 10.3321/j.issn:0564-3929.2007.01.026 [8] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729-735. doi: 10.3321/j.issn:0564-3929.2009.04.024 [9] LIM J M, JIN B, BUTHER D J. A comparison of electrical stimulation for electronic and EDTA-enhanced phytoremediation of lead using Indian mustard (Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(8): 2737-2740. doi: 10.5012/bkcs.2012.33.8.2737 [10] BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3): 318-326. doi: 10.1016/j.chemosphere.2010.12.052 [11] BAKER A J M, BROOKS R R, BAKER A J M, et al. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126. [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [13] 曹会聪, 王金达, 张学林. BCR法在污染农田黑土重金属形态分布研究中的应用[J]. 水土保持学报, 2006, 20(6): 163-166. doi: 10.3321/j.issn:1009-2242.2006.06.039 [14] CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181: 179-191. doi: 10.1016/j.electacta.2015.01.025 [15] 肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927-937. [16] 周贵宇, 姜慧敏, 杨俊诚, 等. 几种有机物料对设施菜田土壤Cd、Pb生物有效性的影响[J]. 环境科学, 2016, 37(10): 4011-4019. [17] KHAN M A, KHAN S, KHAN A, et al. Soil contamination with cadmium, consequences and remediation using organic amendments[J]. Science of the Total Environment, 2017, 601: 1591-1605. [18] OUDEH M, KHAN M, SCULLION J. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi[J]. Environmental Pollution, 2008, 116(2): 293-300. [19] ZHOU T, WU L, CHRISTIE P, et al. The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: The role of particulate organic matter[J]. Plant & Soil, 2018, 429(1/2): 321-333. [20] LI J, LU Y, SHIM H, et al. Use of the BCR sequential extraction procedure for the study of metal availability to plants[J]. Journal of Environmental Monitoring, 2010, 12(2): 466-471. doi: 10.1039/B916389A [21] 曾炜铨, 宋波, 袁立竹, 等. 改良剂对广西环江强酸铅锌污染土壤的修复作用[J]. 环境科学, 2015, 36(6): 2306-2313. [22] 陈建斌. 有机物料对土壤的外源铜和镉形态变化的不同影响[J]. 农业环境科学学报, 2002, 21(5): 450-452. doi: 10.3321/j.issn:1672-2043.2002.05.018 [23] QUEVAUVILLER P, RAURET G, GRIEPINK B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231-235. [24] 李勇, 朱亮, 王超. 黑麦草对土壤中Cd不同赋存形态的吸收规律[J]. 农业环境科学学报, 2003, 22(3): 353-356. doi: 10.3321/j.issn:1672-2043.2003.03.026 [25] 林汲, 程琛, 韩明强, 等. 硅藻土有机肥有机物料对Cd-Zn复合污染土壤重金属形态和有效性的影响[J]. 农业资源与环境学报, 2014, 31(4): 366-371. [26] LI W C, YE Z H, WONG M H. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii[J]. Plant and soil, 2010, 326(1/2): 453-467.