[1] |
姚桂华. 交流电场-有机物料提高东南景天修复重金属污染土壤效率的研究[D]. 杭州: 浙江农林大学, 2015.
|
[2] |
姚桂华, 吴东涛, 胡杨勇, 等. 淹水条件下有机肥对土壤重金属形态转化及迁移的影响[J]. 浙江农业学报, 2016, 28(1): 127-133. doi: 10.3969/j.issn.1004-1524.2016.01.21
|
[3] |
王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193.
|
[4] |
李仲谨, 李铭杰, 王海峰, 等. 腐植酸类物质应用研究进展[J]. 化学研究, 2009, 20(4): 103-107. doi: 10.3969/j.issn.1008-1011.2009.04.028
|
[5] |
SUNG K, KIM K S, PARK S. Enhancing degradation of total petroleum hydrocarbons and uptake of heavy metals in a wetland microcosm planted with phragmites communis by humic acids addition[J]. International Journal of Phytoremediation, 2013, 15(6): 536-549. doi: 10.1080/15226514.2012.723057
|
[6] |
丁炳红. 紫云英等有机物料还田对稻田氮磷损失及重金属活性的影响[D]. 杭州: 浙江农林大学, 2012.
|
[7] |
陈海峰, 周东美, 仓龙, 等. 垂直电场对EDTA络合诱导铜锌植物吸收及其迁移风险的影响[J]. 土壤学报, 2007, 44(1): 174-178. doi: 10.3321/j.issn:0564-3929.2007.01.026
|
[8] |
仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729-735. doi: 10.3321/j.issn:0564-3929.2009.04.024
|
[9] |
LIM J M, JIN B, BUTHER D J. A comparison of electrical stimulation for electronic and EDTA-enhanced phytoremediation of lead using Indian mustard (Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(8): 2737-2740. doi: 10.5012/bkcs.2012.33.8.2737
|
[10] |
BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3): 318-326. doi: 10.1016/j.chemosphere.2010.12.052
|
[11] |
BAKER A J M, BROOKS R R, BAKER A J M, et al. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.
|
[12] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[13] |
曹会聪, 王金达, 张学林. BCR法在污染农田黑土重金属形态分布研究中的应用[J]. 水土保持学报, 2006, 20(6): 163-166. doi: 10.3321/j.issn:1009-2242.2006.06.039
|
[14] |
CHIRAKKARA R A, REDDY K R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181: 179-191. doi: 10.1016/j.electacta.2015.01.025
|
[15] |
肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927-937.
|
[16] |
周贵宇, 姜慧敏, 杨俊诚, 等. 几种有机物料对设施菜田土壤Cd、Pb生物有效性的影响[J]. 环境科学, 2016, 37(10): 4011-4019.
|
[17] |
KHAN M A, KHAN S, KHAN A, et al. Soil contamination with cadmium, consequences and remediation using organic amendments[J]. Science of the Total Environment, 2017, 601: 1591-1605.
|
[18] |
OUDEH M, KHAN M, SCULLION J. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi[J]. Environmental Pollution, 2008, 116(2): 293-300.
|
[19] |
ZHOU T, WU L, CHRISTIE P, et al. The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: The role of particulate organic matter[J]. Plant & Soil, 2018, 429(1/2): 321-333.
|
[20] |
LI J, LU Y, SHIM H, et al. Use of the BCR sequential extraction procedure for the study of metal availability to plants[J]. Journal of Environmental Monitoring, 2010, 12(2): 466-471. doi: 10.1039/B916389A
|
[21] |
曾炜铨, 宋波, 袁立竹, 等. 改良剂对广西环江强酸铅锌污染土壤的修复作用[J]. 环境科学, 2015, 36(6): 2306-2313.
|
[22] |
陈建斌. 有机物料对土壤的外源铜和镉形态变化的不同影响[J]. 农业环境科学学报, 2002, 21(5): 450-452. doi: 10.3321/j.issn:1672-2043.2002.05.018
|
[23] |
QUEVAUVILLER P, RAURET G, GRIEPINK B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(1/2/3/4): 231-235.
|
[24] |
李勇, 朱亮, 王超. 黑麦草对土壤中Cd不同赋存形态的吸收规律[J]. 农业环境科学学报, 2003, 22(3): 353-356. doi: 10.3321/j.issn:1672-2043.2003.03.026
|
[25] |
林汲, 程琛, 韩明强, 等. 硅藻土有机肥有机物料对Cd-Zn复合污染土壤重金属形态和有效性的影响[J]. 农业资源与环境学报, 2014, 31(4): 366-371.
|
[26] |
LI W C, YE Z H, WONG M H. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii[J]. Plant and soil, 2010, 326(1/2): 453-467.
|